The contractile phenotype and function of myofibroblasts have been proposed to play a critical role in wound closure. It has been hypothesized that smooth muscle α-actin expressed in myofibroblasts is critical for its formation and function. We have used smooth muscle α-actin-null mice to test this hypothesis. Full-thickness excisional wounds closed at a similar rate in smooth muscle α-actin-null and wild-type mice. In addition, fibroblasts in smooth muscle α-actin-null granulation tissue when immunostained with a monoclonal antibody that recognizes all muscle actin isoforms exhibited a myofibroblast-like distribution and a stress fiber-like pattern, showing that these cells acquired the myofibroblast phenotype. Dermal fibroblasts from smooth muscle α-actin-null and wild-type mice formed stress fibers and supermature focal adhesions, and generated similar amounts of contractile force in response to transforming growth factor-β1. Smooth muscle γ-actin and skeletal muscle α-actin were expressed in smooth muscle α-actin-null myofibroblasts, as shown by immunostaining, real-time polymerase chain reaction, and mass spectrometry. These results show that smooth muscle α-actin is not necessary for myofibroblast formation and function and for wound closure, and that smooth muscle γ-actin and skeletal muscle α-actin may be able to functionally compensate for the lack of smooth muscle α-actin in myofibroblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540133PMC
http://dx.doi.org/10.1111/wrr.12001DOI Listing

Publication Analysis

Top Keywords

smooth muscle
44
muscle α-actin
20
muscle α-actin-null
20
muscle
14
smooth
11
wound closure
8
α-actin expressed
8
formation function
8
α-actin-null wild-type
8
wild-type mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!