Polypyridyl complexes of Co(II/III) have been gaining prominence as potential replacements for I(-)/I(3)(-) as mediators in dye sensitized solar cells. In that regard, homoleptic pseudo-octahedral complexes of 4,4'-di-t-butyl-2,2'-bipyridine, [Co(DTB)(3)](2+/3+), and 4,4',4″-tri-t-butyl-2,2':6,2″-terpyridine, [Co(TTT)(2)](2+/3+), have been of particular interest. These complexes show extreme electrode surface and electrolyte dependent electrochemical behavior. Below, we report on the cyclic voltammetric behavior of these two complexes at glassy carbon electrodes in two different electrolytes. The electrochemical data suggests that the Co(II/III) electron transfer is significantly nonadiabatic, especially for [Co(DTB)(3)](2+/3+) in LiClO(4) electrolyte.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la304262aDOI Listing

Publication Analysis

Top Keywords

cyclic voltammetric
8
complexes glassy
8
glassy carbon
8
carbon electrodes
8
complexes
5
voltammetric study
4
study cobalt
4
cobalt poly-4-t-butylpyridine
4
poly-4-t-butylpyridine ligand
4
ligand complexes
4

Similar Publications

This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.

View Article and Find Full Text PDF

In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine.

View Article and Find Full Text PDF

Selective sensing of terbinafine hydrochloride using carbon-based electrodes: a green and sustainable electroanalytical method for pharmaceutical products.

Anal Methods

January 2025

ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.

Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.

View Article and Find Full Text PDF

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!