Of the numerous mechanisms that have been postulated to explain the origin of biological homochirality, asymmetric autocatalysis coupled with mutual inhibition is often cited as a plausible route to abiotic symmetry breaking. However, in a system closed to mass flow, the constraint of microscopic reversibility ensures that this far-from-equilibrium phenomenon can at best provide a temporary excursion from racemic equilibrium. Comparatively little attention has been paid in the literature to the manner in which such a closed system approaches equilibrium, examining the mechanisms and time scales involved in its transit. We use an elementary lattice model with molecular degrees of freedom, and satisfying microscopic reversibility, to investigate the temporal evolution of stochastic symmetry breaking in a closed system. Numerical investigation of the model's behavior identified conditions under which the system's evolution toward racemic equilibrium becomes extremely slow, allowing for long-time persistence of a symmetry-broken state. Strong mutual inhibition between enantiomers facilitates a "monomer purification" mechanism, in which molecules of the minor enantiomer are rapidly sequestered and a nearly homochiral state persists for long times, even in the presence of significant reverse reaction rates. Simple order of magnitude estimates show that with reasonable physical parameters a symmetry-broken state could persist over geologically relevant time scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp3093644 | DOI Listing |
Cells
January 2025
Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
Metastasizing cancer cells surreptitiously can adapt to metabolic activity during their invasion. By initiating their communications for invasion, cancer cells can reprogram their cellular activities to initiate their proliferation and migration and uniquely counteract metabolic stress during their progression. During this reprogramming process, cancer cells' metabolism and other cellular activities are integrated and mutually regulated by tunneling nanotube communications to alter their specific metabolic functional drivers of tumor growth and progression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Modelling of Cognitive Processes, Berlin Institute of Technology, Berlin 10587, Germany.
Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.
View Article and Find Full Text PDFPathol Oncol Res
January 2025
Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
The () gene family is of rising importance as their fusions are oncogenic, and specific target drugs are available to inhibit the chimera proteins. Pan-TRK antibody, which shows the overexpression of the genes, is a useful tool to detect tumors with or without gene alterations, due to high negative predictive value. Though it is well known that pan-TRK immunopositivity is usually not connected to fusion, the role of other possible genetic alterations is under-researched.
View Article and Find Full Text PDFFEBS J
January 2025
Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany.
Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Banasthali Vidhyapith, Banasthali, Rajasthan, 304022, India.
Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!