Durable responses with lenalidomide monotherapy have been reported in patients with non-Hodgkin lymphoma. In relapsed/refractory diffuse large B-cell lymphoma (DLBCL), higher responses were observed in the activated B-cell-like (ABC) subtype than in the germinal centre B-cell-like subtype. Herein, the molecular mechanisms involved in the differential efficacy of lenalidomide in DLBCL subtypes were investigated. Using DLBCL cell lines, lenalidomide treatment was found to preferentially suppress proliferation of ABC-DLBCL cells in vitro and delay tumour growth in a human tumour xenograft model, with minimal effect on non-ABC-DLBCL cells. This tumouricidal effect was associated with downregulation of interferon regulatory factor 4 (IRF4), a hallmark of ABC-DLBCL cells. IRF4 inhibition by lenalidomide induced downregulation of B-cell receptor (BCR)-dependent NF-κB. Whereas IRF4-specific small, interfering RNA mimicked the effects of lenalidomide reducing NF-κB activation, IRF4 overexpression enhanced NF-κB activation and conferred resistance to lenalidomide. These findings indicate the crucial role of IRF4 inhibition in lenalidomide efficacy in ABC cells. Furthermore, lenalidomide-induced IRF4 downregulation required the expression of cereblon, a molecular target of lenalidomide. Taken together, these findings suggest that lenalidomide has direct antitumour activity against DLBCL cells, preferentially ABC-DLBCL cells, by blocking IRF4 expression and the BCR-NF-κB signalling pathway in a cereblon-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bjh.12172 | DOI Listing |
Haematologica
December 2024
Research Programs Unit, Applied Tumor Genomics, University of Helsinki, Helsinki, Finland; Department of Oncology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Medicine Flagship, Helsinki.
The tumor microenvironments (TME) of diffuse large B-cell lymphoma (DLBCL) subgroups have remained poorly characterized. Here, we dissected the composition and spatial organization of the TME in germinal center B-cell (GCB), activated B-cell (ABC), and testicular DLBCLs (T-DLBCL) using gene expression profiling and multiplex immunohistochemistry. We found that high proportions of M2-like tumor-associated macrophages (TAMs) and cytotoxic tumor-infiltrating T cells (TILs) were characteristic of ABC DLBCL TME.
View Article and Find Full Text PDFHaematologica
September 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600.
The activated B-cell-like subtype of diffuse large B-cell lymphoma (ABC-DLBCL) displays a worse outcome than the germinal center B-cell-like subtype (GCB-DLBCL). Currently, targeting tumor microenvironment (TME) is the promising approach to cure DLBCL with profound molecular heterogeneity, however, the factors affecting the tumor-promoting TME of ABCDLBCL are elusive. Here, cytokine interleukin-16 (IL-16) is expressed in tumor cells of ABCDLBCL and secreted by the cleavage of active caspase-3.
View Article and Find Full Text PDFBr J Haematol
November 2024
Dana Farber Cancer Institute, Boston, Massachusetts, USA.
J Med Chem
July 2024
Kymera Therapeutics, 200 Arsenal Yards Boulevardd, Watertown, Massachusetts 02472, United States.
Clin Immunol
August 2024
Departments of Pathology and Microbiology, and Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA. Electronic address:
Activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive lymphoma characterized by constitutive NF-κB activation, but whether miR-17∼92 contributes to this activation remains unclear. Herein, we sought to evaluate the role of miR-17∼92 in the process of NF-κB activation in ABC-DLBCL. We found that the expression of miR-17∼92 primary transcript was positively correlated with NF-κB activity, miR-17∼92 activated the NF-κB signaling in ABC-DLBCL, and its over-expression promoted ABC-DLBCL cell growth, accelerated cell G1 to S phase transition and enhanced cell resistance to NF-κB inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!