Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549630 | PMC |
http://dx.doi.org/10.1089/ast.2012.0876 | DOI Listing |
Stomatologiia (Mosk)
January 2025
A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia.
The Purpose: Of the study was to assess oral microbiocenosis changes in participants of microgravity modeling in a control group and using prophylaxis in the form of a probiotic supplement with 1.0·10 CFU of strain in one lozenge and a dairy product containing not less than 1·10 CFU of s strain in one gram.
Materials And Methods: The study included 15 participants aged 25-40 years from the "Dry Immersion-2018" experiment.
FASEB J
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.
View Article and Find Full Text PDFNPJ Microgravity
January 2025
NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA.
The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects.
View Article and Find Full Text PDFWilderness Environ Med
January 2025
Centre Européen de Réalité Virtuelle, Ecole nationale d'Ingenieurs de Brest, Brest, Bretagne, France.
Introduction: Augmented reality is a promising technology for enhancing remote medical assistance. It assists users by directly projecting the relevant virtual assistance in the real world at the right moment and at the right location. This modality is called colocalization but has not been validated in parabolic flights.
View Article and Find Full Text PDFMech Ageing Dev
January 2025
Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands.
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!