Inflammation and oxidative stress play fundamental roles in the pathogenesis of atherosclerosis. Myeloperoxidase has been extensively implicated as a key mediator of inflammatory and redox-dependent processes in atherosclerosis. However, the effect of synthetic myeloperoxidase inhibitors on atherosclerosis has been insufficiently studied. In this study, ApoE(-/-) mice were randomized to low- and high-dose INV-315 groups for 16 weeks on high-fat diet. INV-315 resulted in reduced plaque burden and improved endothelial function in response to acetylcholine. These effects occurred without adverse events or changes in body weight or blood pressure. INV-315 treatment resulted in a decrease in iNOS gene expression, superoxide production and nitrotyrosine content in the aorta. Circulating IL-6 and inflammatory CD11b(+)/Ly6G(low)/7/4(hi) monocytes were significantly decreased in response to INV-315 treatment. Acute pretreatment with INV-315 blocked TNFα-mediated leukocyte adhesion in cremasteric venules and inhibited myeloperoxidase activity. Cholesterol efflux was significantly increased by high-dose INV-315 via ex-vivo reverse cholesterol transport assays. Our results suggest that myeloperoxidase inhibition may exert anti-atherosclerotic effects via inhibition of oxidative stress and enhancement of cholesterol efflux. These findings demonstrate a role for pharmacologic modulation of myeloperoxidase in atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519467PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050767PLOS

Publication Analysis

Top Keywords

oxidative stress
8
high-dose inv-315
8
inv-315 treatment
8
cholesterol efflux
8
myeloperoxidase
6
inv-315
6
atherosclerosis
5
effects novel
4
novel pharmacologic
4
pharmacologic inhibitor
4

Similar Publications

Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.

View Article and Find Full Text PDF

Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.

View Article and Find Full Text PDF

Purpose Of Review: The exposome refers to the total environmental exposures a person encounters throughout life, and its relationship with human health is increasingly studied. This non-systematic review focuses on recent research investigating the effects of environmental factors-such as air pollution, noise, greenspace, neighborhood walkability, and metallic pollutants-on atherosclerosis, a major cause of cardiovascular disease.

Recent Findings: Studies show that long-term exposure to airborne particulate matter can impair endothelial function and elevate adhesion molecule levels, leading to vascular damage.

View Article and Find Full Text PDF

As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!