Predator body size often indicates predation risk, but its significance in non-consumptive effects (NCEs) and predator risk assessment has been largely understudied. Although studies often recognize that predator body size can cause differing cascading effects, few directly examine prey foraging behavior in response to individual predator sizes or investigate how predator size is discerned. These mechanisms are important since perception of the risk imposed by predators dictates behavioral responses to predators and subsequent NCEs. Here, we evaluate the role of predator body size and biomass on risk assessment and the magnitude of NCEs by investigating mud crab foraging behavior and oyster survival in response to differing biomasses of blue crab predators using both laboratory and field methods. Cues from high predator biomass treatments including large blue crab predators and multiple small blue crab predators decreased mud crab foraging and increased oyster survival, whereas mud crab foraging in response to a single small blue crab did not differ from controls. Mud crabs also increased refuge use in the presence of large and multiple small, but not single small, blue crab predators. Thus, both predator biomass and aggregation patterns may affect the expression of NCEs. Understanding the impact of predator biomass may therefore be necessary to successfully predict the role of NCEs in shaping community dynamics. Further, the results of our laboratory experiments were consistent with observed NCEs in the field, suggesting that data from mesocosm environments can provide insight into field situations where flow and turbulence levels are moderate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-012-2488-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!