Human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) are being studied for cell replacement therapies, including the treatment of acute spinal cord injury. Current methods of differentiating OPCs from hESCs require complex, animal-derived biological extracellular matrices (ECMs). Defined, low-cost, robust, and scalable culture methods will need to be developed for the widespread deployment and commercialization of hESC-derived cell therapies. Here we describe a defined culture system that uses a vitronectin-derived synthetic peptide acrylate surface (VN-PAS; commercially available as Corning(®) Synthemax(®) surface) in combination with a defined culture medium for hESC growth and differentiation to OPCs. We show that synthetic VN-PAS supports OPC attachment and differentiation, and that hESCs grown on VN-PAS are able to differentiate into OPCs on VN-PAS. Compared to OPCs derived from hESCs grown on ECM of animal origin, higher levels of NG2, a chondroitin sulfate proteoglycan expressed by OPCs, were observed in OPCs differentiated from H1 hESCs grown on VN-PAS, while the expression levels of Nestin and PDGFRα were comparable. In summary, this study demonstrates that synthetic VN-PAS can replace complex, animal-origin ECM to support OPC differentiation from hESCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2012.0508 | DOI Listing |
Stem Cell Rev Rep
October 2024
Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA, USA.
Research on cancer therapies has benefited from predictive tools capable of simulating treatment response and other disease characteristics in a personalized manner, in particular three-dimensional cell culture models. Such models include tumor-derived spheroids, multicellular spheroids including organotypic multicellular spheroids, and tumor-derived organoids. Additionally, organoids can be grown from various cancer cell types, such as pluripotent stem cells and induced pluripotent stem cells, progenitor cells, and adult stem cells.
View Article and Find Full Text PDFPLoS One
June 2024
Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.
With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the waste medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient E6 media for 48 hours to replicate an early, undirected dissolution of pluripotency.
View Article and Find Full Text PDFJ Control Release
July 2024
Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
Recently, the formation of three-dimensional (3D) cell aggregates known as embryoid bodies (EBs) grown in media supplemented with HSC-specific morphogens has been utilized for the directed differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), into clinically relevant hematopoietic stem cells (HSCs). However, delivering growth factors and nutrients have become ineffective in inducing synchronous differentiation of cells due to their 3D conformation. Moreover, irregularly sized EBs often lead to the formation of necrotic cores in larger EBs, impairing differentiation.
View Article and Find Full Text PDFSci Rep
May 2024
Institute of Medical Biochemistry and Laboratory Diagnostics, and 4Th Department of Internal Medicine, 1St Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, 121 08, Czech Republic.
Statins, the drugs used for the treatment of hypercholesterolemia, have come into the spotlight not only as chemoadjuvants, but also as potential stem cell modulators in the context of regenerative therapy. In our study, we compared the in vitro effects of all clinically used statins on the viability of human pancreatic cancer (MiaPaCa-2) cells, non-cancerous human embryonic kidney (HEK 293) cells and adipose-derived mesenchymal stem cells (ADMSC). Additionally, the effect of statins on viability of MiaPaCa-2 and ADMSC cells spheroids was tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!