Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523288 | PMC |
http://dx.doi.org/10.1038/srep00988 | DOI Listing |
Nat Commun
January 2025
School of Life Sciences, University of Dundee, Dundee, UK.
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.
View Article and Find Full Text PDFMater Horiz
December 2024
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology, Beijing 100029, China.
Cage-like and ladder-like polysilsesquioxane, named EPOSS and ELPSQ, were synthesized and employed as precursors to develop a UV-curable membrane exhibiting remarkable hardness, superior flexibility, exceptional transparency and excellent friction resistance. Nanoindentation analysis demonstrates that the precise control of the Silicane molecular frameworks by adding a small quantity of EPOSS to ELPSQ can significantly enhance the hardness of the membranes. The resulting hardness value reaches a record 1.
View Article and Find Full Text PDFPLoS One
December 2024
School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, China.
Characterizing anisotropy remains challenging in rock mechanics. Particularly, the strengths and failure patterns of layered shales under shear load are significantly anisotropic mainly because of the bedding planes. Meanwhile, understanding the creation and propagation of shear fractures is critical for drilling, mining, tunnelling, exploitation of shale gas, etc.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2024
Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins.
View Article and Find Full Text PDFCommun Eng
October 2024
Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore.
Magnetically actuated miniature origami crawlers are capable of robust locomotion in confined environments but are limited to passive functionalities. Here, we propose a bistable origami crawler that can shape-morph to access two separate regimes of folding degrees of freedom that are separated by an energy barrier. Using the modified bistable V-fold origami crease pattern as the fundamental unit of the crawler, we incorporated internal permanent magnets to enable untethered shape-morphing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!