A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil. | LitMetric

Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K(d) and K(OC) values were 15 and 298 L kg(-1) for the Japanese tea field soil as well as 16 and 1610 L kg(-1) for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L(-1). In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT(50)>122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2012.11.027DOI Listing

Publication Analysis

Top Keywords

field soil
20
tea field
16
japanese tea
12
laboratory tests
8
tea
8
soil
8
photo-induced biotransformation
8
tests flubendiamide
8
flubendiamide
7
field
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!