We tested a category approach to predict the hepatotoxic effects of repeated doses of allyl esters using a new database for repeated-dose toxicity. Based on information on hepatotoxic mechanism of allyl acetate, the category was defined as allyl esters that are hydrolyzed to allyl alcohol. Allyl alcohol is readily oxidized to acrolein in the liver, causing hepatotoxicity. Seventeen marketed allyl esters were obtained and grouped into category by identifying or predicting allyl alcohol formation. Allyl esters with a saturated straight alkyl carboxylic acid moiety (allyl acetate, hexanoate and heptanoate as tested species, and allyl butyrate, pentanoate, octanoate, nonanoate and decanoate as untested species) are likely similar in rate of ester hydrolysis, thereby defining subcategory 1. NOAEL and LOAEL for the hepatotoxic effects were estimated at 0.12 and 0.25 mmol/kg/d for the untested species, based on those of allyl acetate. The remaining nine allyl esters with other alkyl or aromatic carboxylic acid moieties were placed in subcategory 2: their hepatotoxicity levels were not predictable due to an unclear match between their degree of structural complexity and rate of hydrolysis. Our results demonstrate the usefulness of the category approach for predicting the hepatotoxicity of untested allyl esters with saturated straight alkyl chains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2012.12.001DOI Listing

Publication Analysis

Top Keywords

allyl esters
28
allyl
14
category approach
12
allyl acetate
12
allyl alcohol
12
approach predicting
8
hepatotoxic effects
8
esters saturated
8
saturated straight
8
straight alkyl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!