Angelica dahurica is used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. In the present study, we examined the effect of A. dahurica polysaccharide (ADP) on dendritic cell (DC) maturation. ADP increased the expressions of CD86 and MHC-II molecules, the production of IL-12, IL-1β, and TNF-α, and allogeneic T cell activation ability of DCs, and reduced DC endocytosis. As a mechanism of action, the knockdown of TLR4 with small interfering RNA decreased the ADP-induced production of nitric oxide and IL-12 by DCs, suggesting the membrane receptor candidate of ADP. After binding to TLR4, ADP increased the phosphorylation of ERK, JNK, and p38 MAPKs, and the nuclear translocation of NF-κB p50/p65. These results indicate that ADP activates DCs through TLR4 and downstream signalings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2012.12.007DOI Listing

Publication Analysis

Top Keywords

dendritic cell
8
cell activation
8
angelica dahurica
8
adp increased
8
adp
5
activation polysaccharide
4
polysaccharide isolated
4
isolated angelica
4
dahurica angelica
4
dahurica functional
4

Similar Publications

Immune and metabolic factors play an important role in the onset and development of insomnia. This study aimed to investigate the causal relationship between insomnia and immune cells and metabolites. Data for 731 immune cell phenotypes, 1400 metabolites, and insomnia in this study were obtained from the GWAS open-access database.

View Article and Find Full Text PDF

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.

View Article and Find Full Text PDF

The multifaceted role of XCL1 in health and disease.

Protein Sci

February 2025

Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.

The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.

View Article and Find Full Text PDF

Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!