A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549673 | PMC |
http://dx.doi.org/10.1016/j.aca.2012.10.043 | DOI Listing |
Langmuir
January 2025
Mechanical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
Electrorheological fluids are suspensions that are characterized by a strong functional dependence of their constitutive behavior on the local electric field. While such fluids are known to be promising in different applications of microfluidics including electrokinetic flows, their capabilities of controlling ion transport and preferential solute segregation in confined fluidic systems remain to be explored. In this work, we bring out the unique role of electrorheological fluids in orchestrating the selective enrichment and depletion of charged species in variable area microfluidic channels.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
In order to reproduce pharmacokinetics (PK) profiles seen in vivo, the Hollow Fiber Infection Model (HFIM) is a useful in vitro module in the evaluation of antimicrobial resistance. In order to reduce the consumption of culture medium and drugs, we developed a hollow fiber microreactor applicable to the HFIM by integrating the HFIM function. Next, we constructed a novel control method by using the "digital twin" of the microreactor to achieve precise concentration control.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
Mater Horiz
November 2024
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.
Electrophoresis
November 2024
Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan (ROC).
This study involved the design and fabrication of a microfluidic chip integrated with permalloy micromagnets. The device was used with aptamer-modified magnetic beads (MBs) of various sizes to successfully separate lung cancer cells from a mixture of other cells. The overall separation efficiency was evaluated based on the ratios of cells in the different outlets and inlets of the chip.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!