Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis.

Epilepsy Res

Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.

Published: May 2013

AI Article Synopsis

  • The study focuses on understanding the brain activity changes that occur before absence seizures, known as pre-epileptic seizures.
  • MPE (multiscale permutation entropy) is introduced as a new method for analyzing EEG recordings, showing better classification accuracy (90.6%) compared to traditional methods (86.1%).
  • Results indicate that EEG data shows detectable changes in dynamical characteristics as it transitions from a seizure-free state to a pre-seizure and then to a seizure state.

Article Abstract

Understanding the transition of brain activities towards an absence seizure, called pre-epileptic seizure, is a challenge. In this study, multiscale permutation entropy (MPE) is proposed to describe dynamical characteristics of electroencephalograph (EEG) recordings on different absence seizure states. The classification ability of the MPE measures using linear discriminant analysis is evaluated by a series of experiments. Compared to a traditional multiscale entropy method with 86.1% as its classification accuracy, the classification rate of MPE is 90.6%. Experimental results demonstrate there is a reduction of permutation entropy of EEG from the seizure-free state to the seizure state. Moreover, it is indicated that the dynamical characteristics of EEG data with MPE can identify the differences among seizure-free, pre-seizure and seizure states. This also supports the view that EEG has a detectable change prior to an absence seizure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2012.11.003DOI Listing

Publication Analysis

Top Keywords

permutation entropy
12
absence seizure
12
eeg recordings
8
multiscale permutation
8
dynamical characteristics
8
seizure states
8
seizure
6
eeg
5
dynamic characteristics
4
absence
4

Similar Publications

The analysis of electrophysiological recordings of the human brain in resting state is a key experimental technique in neuroscience. Resting state is the default condition to characterize brain dynamics. Its successful implementation relies both on the capacity of subjects to comply with the requirement of staying awake while not performing any cognitive task, and on the capacity of the experimenter to validate that compliance.

View Article and Find Full Text PDF

With rising demand for electricity, integrating renewable energy sources into power networks has become a key challenge. The fast incorporation of clean energy sources, particularly solar and wind power, into the existing power grid in the last several years has raised a major problem in controlling and managing the power grid due to the intermittent nature of these sources. Therefore, in order to ensure the safe RES integration providing high-quality power at a fair price and for the secure and reliable functioning of electrical systems, a precise one-day-ahead solar irradiation and wind speed forecast is essential for a stable and safe hybrid energy system.

View Article and Find Full Text PDF

Cognitive load (CL) is one of the leading factors moderating states and performance among drivers. Heavily increased CL may contribute to the development of mental stress. Averaged heart rate (HR) and heart rate variability (HRV) indices are shown to reflect CL levels in different tasks.

View Article and Find Full Text PDF

Accurate prediction of runoff is of great significance for rational planning and management of regional water resources. However, runoff presents non-stationary characteristics that make it impossible for a single model to fully capture its intrinsic characteristics. Enhancing its precision poses a significant challenge within the area of water resources management research.

View Article and Find Full Text PDF

EEG monitoring during anesthesia or for diagnosing sleep disorders is a common standard. Different approaches for measuring the important information of this biosignal are used. The most often and efficient one for entropic parameters is permutation entropy as it can distinguish the vigilance states in the different settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!