Aim: We studied the use of methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) as a cost-effective screening tool for methylome-wide association studies (MWAS).
Materials & Methods: Because MBD-seq has not yet been applied on a large scale, we first developed and tested a pipeline for data processing using 1500 schizophrenia cases and controls plus 75 technical replicates with an average of 68 million reads per sample. This involved the use of technical replicates to optimize quality control for multi- and duplicate-reads, an in silico experiment to identify CpGs in loci with alignment problems, CpG coverage calculations based on multiparametric estimates of the fragment size distribution, a two-stage adaptive algorithm to combine data from correlated adjacent CpG sites, principal component analyses to control for confounders and new software tailored to handle the large data set.
Results: We replicated MWAS findings in independent samples using a different technology that provided single base resolution. In an MWAS of age-related methylation changes, one of our top findings was a previously reported robust association involving GRIA2. Our results also suggested that owing to the many confounding effects, a considerable challenge in MWAS is to identify those effects that are informative about disease processes.
Conclusion: This study showed the potential of MBD-seq as a cost-effective tool in large-scale disease studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923085 | PMC |
http://dx.doi.org/10.2217/epi.12.59 | DOI Listing |
Epigenetics
March 2022
Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
Methylation signatures in cell-free DNA (cfDNA) have shown great sensitivity and specificity in the characterization of tumour status and classification of tumour types, as well as the response to therapy and recurrence. Currently, most cfDNA methylation studies are based on bisulphite conversion, especially targeted bisulphite sequencing, while enrichment-based methods such as cfMeDIP-seq are beginning to show potential. Here, we report an enrichment-based ultra-low input cfDNA methylation profiling method using methyl-CpG binding proteins capture, termed cfMBD-seq.
View Article and Find Full Text PDFMol Ecol Resour
February 2021
Department of Integrative Biology, University of Texas, Austin, TX, USA.
Interrogation of chromatin modifications, such as DNA methylation, has the potential to improve forecasting and conservation of marine ecosystems. The standard method for assaying DNA methylation (whole genome bisulphite sequencing), however, is currently too costly to apply at the scales required for ecological research. Here, we evaluate different methods for measuring DNA methylation for ecological epigenetics.
View Article and Find Full Text PDFEpigenetics
September 2017
a Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond , VA , USA.
We recently showed that, after optimization, our methyl-CpG binding domain sequencing (MBD-seq) application approximates the methylome-wide coverage obtained with whole-genome bisulfite sequencing (WGB-seq), but at a cost that enables adequately powered large-scale association studies. A prior drawback of MBD-seq is the relatively large amount of genomic DNA (ideally >1 µg) required to obtain high-quality data. Biomaterials are typically expensive to collect, provide a finite amount of DNA, and may simply not yield sufficient starting material.
View Article and Find Full Text PDFMethods
January 2015
Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA. Electronic address:
DNA CpG methylation is a widespread epigenetic mark in high eukaryotes including mammals. DNA methylation plays key roles in diverse biological processes such as X chromosome inactivation, transposable element repression, genomic imprinting, and control of gene expression. Recent advancements in sequencing-based DNA methylation profiling methods provide an unprecedented opportunity to measure DNA methylation in a genome-wide fashion, making it possible to comprehensively investigate the role of DNA methylation.
View Article and Find Full Text PDFEpigenomics
December 2012
Center for Biomarker Research & Personalized Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
Aim: We studied the use of methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) as a cost-effective screening tool for methylome-wide association studies (MWAS).
Materials & Methods: Because MBD-seq has not yet been applied on a large scale, we first developed and tested a pipeline for data processing using 1500 schizophrenia cases and controls plus 75 technical replicates with an average of 68 million reads per sample. This involved the use of technical replicates to optimize quality control for multi- and duplicate-reads, an in silico experiment to identify CpGs in loci with alignment problems, CpG coverage calculations based on multiparametric estimates of the fragment size distribution, a two-stage adaptive algorithm to combine data from correlated adjacent CpG sites, principal component analyses to control for confounders and new software tailored to handle the large data set.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!