Field runoff pools were used to collect the field surface runoff samples of different cropping systems in Nansi Lake region, and different forms of nitrogen (N) and phosphorus (P) data were analyzed. The source profiles of N and P in different cropping systems were also obtained by summarizing the experimental data measured in the current study. Samples were also collected from the 11 main rivers of Nansi Lake basin and the concentrations of N and P were determined. Principle component analysis (PCA) was applied to obtain cropping non-point pollution sources of N and P. The result showed that three types of N and P contamination sources were apportioned in Nansi Lake basin, explaining 95.275% of the total variance. The first source was from field surface runoff of wheat-maize rotation with a wide pollution range and a larger contribution, and it contributed 50. 220% of the total contamination burden; the second type of N and P source was the water runoff pollution from garlic-maize rotation, were 25.119% contribution; the third source was the surface runoff from wheat-rice rotation, and it contributed 19.937%.
Download full-text PDF |
Source |
---|
Examining the impacts of natural and anthropogenic influences on aquatic macrophytes in shallow lakes is crucial for their effective restoration and management. However, there is a lack of direct evidence regarding past species composition or detailed and continuous evidence of recent changes in aquatic macrophyte communities. This study utilized plant macrofossil remains deposited in the sediment, combined with macrophyte surveys from 1983 to 2010, to reconstruct the historical changes in the macrophyte community over approximately 160 years in Lake Weishan, a sub-lake of Lake Nansi located in the lower Yellow River (Huanghe River) Basin, northern China.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.
Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.
View Article and Find Full Text PDFEnviron Geochem Health
November 2024
College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China.
Identifying nitrate sources and migratory pathways is crucial for controlling groundwater nitrate pollution in agricultural watersheds. This study collected 35 shallow groundwater samples in the Nansi Lake Basin (NLB) to identify groundwater nitrate sources and potential health risks. Results showed that NO concentration in 62.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
Environ Res
December 2024
State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!