Efficient Ca(2+)-switched fluorescent sensors, where fluorescence output is governed by a light-activated ion-gated electron transfer pathway, can be obtained on combining BODIPY chromophores with a readily oxidized biocompatible and selective BAPTA receptor. Herein we report the synthesis and studies of two such conjugates, which vary in the nature of the spacer separating the two electroactive components, namely none (1) or phenyl (2). Single crystal X-ray crystallography and molecular modelling structures and calculations give information on molecular and electronic structure, while steady-state fluorescence experiments show high Ca(2+)-induced fluorescence enhancement factors of 122 and 23 and K(d) values of 0.50 μM and 0.13 μM for 1 and 2, respectively. Notably, studies of the ultrafast photoinduced processes (through transient absorption spectroscopy) give access to electron transfer dynamics in pseudo-physiological media as well as in a polar non-protic solvent and information about the fate of the excited molecules in the presence and absence of calcium. In water, electron transfer rates as high as 3.3 × 10(12) s(−1) and 8.3 × 10(11) s(−1) are measured for the ion-free, directly connected conjugate and the variant incorporating a phenyl spacer, respectively. This electron transfer pathway is efficiently blocked by the presence of an ion, restoring fluorescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2pp25130b | DOI Listing |
Biochemistry
January 2025
Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.
Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!