Cranial irradiation can lead to long-lasting cognitive impairments in patients receiving radiotherapy for the treatment of malignant brain tumors. Recent studies have suggested inflammation as a major contributor to these deficits; we determined if the chemokine (C-C motif) receptor 2 (CCR2) was a mediator of cognitive impairments induced by irradiation. Two-month-old male Ccr2 knockout (-/-) and wild-type mice received 10 Gy cranial irradiation or sham-treatment. One month after irradiation, bromodeoxyuridine was injected intraperitoneally for seven consecutive days to label newly generated cells. At two months postirradiation, cognitive function was assessed by novel object recognition and Morris water maze. Our results show that CCR2 deficiency prevented hippocampus-dependent spatial learning and memory impairments induced by cranial irradiation. Hippocampal gene expression analysis showed that irradiation induced CCR2 ligands such as CCL8 and CCR2 deficiency reduced this induction. Irradiation reduced the number of adult-born neurons in both wild-type and Ccr2(-/-) mice, but the distribution pattern of the adult-born neurons through the granule cell layer was only altered in wild-type mice. Importantly, CCR2 deficiency normalized the fraction of pyramidal neurons expressing the plasticity-related immediate early gene Arc. These data offer new insight into the mechanism(s) of radiation-injury and suggest that CCR2 is a critical mediator of hippocampal neuronal dysfunction and hippocampal cognitive impairments after irradiation. Targeting CCR2 signaling could conceivably provide an effective approach to reduce or prevent the incidence and severity of this serious side effect of ionizing irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563875 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-12-2989 | DOI Listing |
Arthroscopy
January 2025
HSS Sports Medicine Institute, Hospital for Special Surgery; Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute. Electronic address:
The pathophysiology of rotator cuff disease is complex, involving intrinsic and extrinsic factors that contribute to mechanical alterations, inflammation, apoptosis, and neovascularization. These changes result in structural and cellular disruptions, including inflammatory cell infiltration and collagen disorganization. Macrophages have recently gained attention as critical mediators of tissue repair and regeneration.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
J Neuroinflammation
December 2024
Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
Central nervous system (CNS) resident memory CD8 T cells (T) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 T that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection.
View Article and Find Full Text PDFBiosens Bioelectron X
August 2024
Cell and Molecular Tissue Engineering LLC, 14 Highwood Drive, Avon, 06001, CT, USA.
Continuous glucose monitoring (CGM) using implantable glucose sensors is a critical tool in the management of diabetes. Unfortunately, current commercial glucose sensors have limited performance and lifespans , considered to be due to sensor-induced tissue reactions (inflammation, fibrosis, and vessel regression). Previously, our laboratory utilized monocyte/macrophage (Mo/MQ) deficient and depleted mice to establish a causal relationship between Mo/MQ accumulation and inflammation in glucose sensor performance .
View Article and Find Full Text PDFInt J Biol Sci
December 2024
Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
Macrophages play a crucial role in malignant pleural effusion (MPE), a frequent complication of advanced cancer. While C1q macrophages have been identified as a pro-tumoral cluster, direct evidence supporting the role of C1q-mediated macrophages remains to be elucidated. This study employed global and macrophage-specific knockout mice to investigate the role of C1q in MPE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!