Gray matter lesions are thought to play a key role in the progression of disability and cognitive impairment in multiple sclerosis (MS) patients, but whether gray matter damage is caused by inflammation or secondary to axon loss in the white matter, or both, is not clear. In an analysis of postmortem brain samples from 44 cases of secondary progressive MS, 26 cases were characterized by meningeal inflammation with ectopic B-cell follicles and prominent gray matter pathology; subpial cortical lesions containing dense perivascular lymphocytic infiltrates were present in 11 of these cases. Because intracortical immune infiltrates were enriched in B-lineage cells and because we have shown previously that B cells accumulating in the MS brain support an active Epstein-Barr virus (EBV) infection, we investigated evidence of EBV in the infiltrated cortical lesions. Cells expressing EBV-encoded small RNA and plasma cells expressing EBV early lytic proteins (BZLF1, BFRF1) were present in all and most of the intracortical perivascular cuffs examined, respectively. Immunohistochemistry for CD8-positive cells, granzyme B, perforin, and CD107a indicated cytotoxic activity toward EBV-infected plasma cells that was consistently observed in infiltrated cortical lesions, suggesting active immune surveillance. These findings indicate that both meningeal and intraparenchymal inflammation may contribute to cortical damage during MS progression, and that intracortical inflammation may be sustained by an EBV-driven immunopathologic response, similar to findings in white matter lesions and meninges.

Download full-text PDF

Source
http://dx.doi.org/10.1097/NEN.0b013e31827bfc62DOI Listing

Publication Analysis

Top Keywords

cortical lesions
16
gray matter
12
epstein-barr virus
8
secondary progressive
8
multiple sclerosis
8
matter lesions
8
white matter
8
infiltrated cortical
8
cells expressing
8
plasma cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!