Keratin filaments impart resilience against mechanical extension of the cell. Despite the pathophysiological relevance of this function, very little is known about the mechanical properties of intermediate filaments in living cells and how these properties are modulated. We used keratin mutants that mimic or abrogate phosphorylation of keratin 8-serine(431) and keratin 18-serine(52) and investigated their effect on keratin tortuousness after cell stretch release in squamous cell carcinoma cells. Cells transfected with the wild-type keratins were used as controls. We can show that keratin dephosphorylation alters the stretch response of keratin in living cells since keratin tortuousness was abolished when phosphorylation of keratin18-serine(52) was abrogated. Additional experiments demonstrate that keratin tortuousness is not simply caused by a plastic overextension of keratin filaments because tortuousness is reversible and requires an intact actin-myosin system. The role of actin in this process remains unclear, but we suggest anchorage of keratin filaments to actin during stretch that leads to buckling on stretch release. Dephosphorylated keratin18-serine(52) might strengthen the recoil force of keratin filaments and hence explain the abolished buckling. The almost exclusive immunolabeling for phosphorylated keratin18-serine (52) in the cell periphery points at a particular role of the peripheral keratin network in this regard.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.12-215632 | DOI Listing |
Unlabelled: Melanin pigments block genotoxic agents by positioning on the sun-exposed side of human skin keratinocytes' nucleus. How this position is regulated and its role in genome photoprotection remains unknown. By developing a model of human keratinocytes internalizing extracellular melanin into pigment organelles, we show that keratin 5/14 intermediate filaments mechanically control the 3D perinuclear position of pigments, shielding DNA from photodamage.
View Article and Find Full Text PDFPharmaceutics
December 2024
National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy.
Background/objectives: KRT23 was recently discovered as an epithelial-specific intermediate filament protein in the type I keratin family. Many studies have underlined keratin's involvement in several biological processes as well as in the pathogenesis of different diseases. Specifically, KRT23 was reported to affect the structural integrity of epithelial cells and to trigger cellular signaling leading to the onset of cancer.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
The epithelial-mesenchymal transition (EMT) program is critical to metastatic cancer progression. EMT results in the expression of mesenchymal proteins and enhances migratory and invasive capabilities. In a small percentage of cells, EMT results in the expression of stemness-associated genes that provide a metastatic advantage.
View Article and Find Full Text PDFThe stress-induced keratin intermediate filament gene/protein (K16) is spatially restricted to the suprabasal compartment of the epidermis and extensively used as a biomarker for psoriasis, hidradenitis suppurativa, atopic dermatitis and other inflammatory disorders. However, its role in these conditions remains poorly defined. Here we show that K16 negatively regulates type-I interferon (IFN) signaling and innate immune responses.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.
Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!