ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance.

Plant J

Department of Life Sciences and Doris, Bertie Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.

Published: March 2013

A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4-overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild-type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4-overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4-binding element (ABE), have also been identified in other ABI4-repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.12091DOI Listing

Publication Analysis

Top Keywords

sodium ions
16
abi4
9
sodium transporter
8
salt tolerance
8
salt stress
8
accumulation sodium
8
ions shoot
8
developmental stages
8
abi4 mutant
8
mutant plants
8

Similar Publications

Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.

Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.

View Article and Find Full Text PDF

Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.

View Article and Find Full Text PDF

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.

Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.

View Article and Find Full Text PDF

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.

Biopolymers

March 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!