AI Article Synopsis

  • Cyanobacteria are photosynthetic organisms that convert sunlight into chemical energy and use phycobilisomes to absorb light.
  • In bright light, they activate a protective mechanism called non-photochemical quenching (NPQ) to manage excess light, transforming the orange carotenoid protein (OCP) from inactive to active form, which decreases fluorescence.
  • The study examined NPQ in mutant cyanobacteria with truncated phycobilisomes, finding that while quenching was lower than in normal cells, its mechanism and effects were similar.

Article Abstract

Cyanobacteria are oxygen-evolving photosynthetic organisms that harvest sunlight and convert excitation energy into chemical energy. Most of the light is absorbed by large light harvesting complexes called phycobilisomes (PBs). In high-light conditions, cyanobacteria switch on a photoprotective mechanism called non-photochemical quenching (NPQ): During this process, absorption of blue-green light transforms the inactive orange form of the orange carotenoid protein OCP (OCP(o)) into the red active form OCP(r) that subsequently binds to the PB, resulting in a substantial loss of excitation energy and corresponding decrease of the fluorescence. In wild-type cells, the quenching site is a bilin chomophore that fluoresces at 660 nm and which is called APC(Q)(660). In the present work, we studied NPQ in two different types of mutant cells (CB and CK) that possess significantly truncated PBs, using spectrally resolved picosecond fluorescence spectroscopy. The results are in very good agreement with earlier in vitro experiments on quenched and unquenched PBs, although the fraction of quenched PBs is far lower in vivo. It is also lower than the fraction of PBs that is quenched in wild-type cells, but the site, rate, and location of quenching appear to be very similar.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp309570uDOI Listing

Publication Analysis

Top Keywords

light harvesting
8
blue-green light
8
non-photochemical quenching
8
excitation energy
8
wild-type cells
8
light
5
pbs
5
harvesting blue-green
4
light induced
4
induced non-photochemical
4

Similar Publications

The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).

View Article and Find Full Text PDF

Efficient harvesting of triplet excitons multiple fast TTA up-conversion and high-lying reverse intersystem crossing channels for efficient blue fluorescent organic light-emitting diodes.

Chem Sci

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China

The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.

View Article and Find Full Text PDF

Many important processes in cells depend on the transfer of protons through water wires embedded in transmembrane proteins. Herein, we have performed more than 55 μs all-atom simulations of the light-harvesting complex of a diatom, i.e.

View Article and Find Full Text PDF

Sheep and goat meat products are becoming increasingly popular among consumers due to their unique flavor derived from intramuscular fat (IMF), which contributes to formation of the distinctive odor. However, there is currently a dearth of reviews on the impact of IMF on the flavor of sheep and goat meat. The present review aims to discuss the relationships between IMF and flavor through lipid composition and fatty acid (FA) distribution, provide an overview of characteristic flavor compounds affecting the flavor of sheep and goat meat, and shed light on the impacts of pre-mortem and post-mortem factors on meat flavor attributed to changes in FAs and flavor compounds.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!