Heavy metal contents in railway rock-cut slope soil have directly influenced ecosystem on rock-cut slope and eco-envi- ronment safety of farmland nearby. In the study heavy metal Pb, Cd, Zn, Cu and Mn was determined by AAS in railway rock-cut slope and control soil samples on Cheng-Da Railway crossing purple soil in Sichuan province. The results showed that Pb and Mn were significantly higher in rock-cut soil than in control soil, that is 29.7%-35.4%, while Cd, Zn and Cu were similar in both soils.
Download full-text PDF |
Source |
---|
Sci Total Environ
June 2019
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China. Electronic address:
The stability of slope is strengthened by the metal mesh. The studies of the life span and influencing factors of metal mesh in the artificial soil in humid areas will guide ecological restoration of rock-cut slopes in Southwest China. Due to metal corrosion, the fixation function of the metal mesh could last for 10 years.
View Article and Find Full Text PDFSci Total Environ
May 2019
Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, PR China.
Cadmium (Cd) and lead (Pb) that accumulates in the surface soil of railway rock-cut slopes may migrate to nearby croplands. It is important to determine whether backfill soil type influences the transportation of Cd and Pb in the surface soil. Representative rock-cut slopes, backfill soil of 100% rock fragments, 100% agricultural soil, and 50% agricultural soil and 50% rock fragments (n = 2 for each type) were selected.
View Article and Find Full Text PDFSci Total Environ
December 2018
Chengdu Medical College, Chengdu 610500, Sichuan, PR China.
Artificial soil on railway rock-cut slopes may be considerably contaminated with cadmium (Cd) and lead (Pb), which may migrate to nearby croplands and pose substantial risks to human and animal health. We investigate the influence of three types of revegetation modes - herbs (HS); herbs and shrubs (HSS); and herbs, shrubs, and trees (HSTS) - on the transportation of these heavy metals in soils. Six representative rock-cut slopes were chosen, and the vegetation, pollutant concentration, phytostabilization, and simulated rainfall were investigated.
View Article and Find Full Text PDFSci Rep
August 2018
Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China.
External-soil spray seeding (ESSS), a technique of spraying artificial soil materials onto bare slopes for vegetation cover construction, has been widely used to restore rock-cut slopes. However, studies on the effect of the practical application of this technique on different topographic aspects have been rarely performed. In this study, two topographic aspects, namely, north-facing versus south-facing, were investigated under two railway lines, and two local natural slopes (north-facing versus south-facing) were selected as references.
View Article and Find Full Text PDFJ Environ Manage
April 2018
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China. Electronic address:
Large-scale railway construction has resulted in large areas of bare-cut-slope, and outside soil spray seeding (OSSS), a frequently used technique, has been adopted for slope restoration for many years. However, compared with natural slope soils, the quality of artificial soils on rock-cut slopes is low. Enzyme activity and microbial biomass are the main indices used for estimating soil quality; thus, our objective was to explore the influence of slope position, slope aspect, and season on two important factors that positively influence the plant growth capability in artificial soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!