This study was undertaken to evaluate the efficacy of inactivation of several indigenous marine species and the formation of oxidants and other by-products using medium-pressure ultraviolet (MPUV) ballast water treatment. The ballast water treatment system (BWTS) used in this study was composed of filtration modules as a pretreatment process, followed by a UV irradiation process equipped with a polychromatic MPUV lamp. The experiments were performed on seawater (Busan, >32 PSU) and brackish water (Nakdong River, 20-22 PSU) with flow rates of 50 and 250 m(3)/h. The disinfection efficacy of the system was evaluated using indigenous species (>50 microm and 10-50 microm) and surrogate microorganisms (E. coli and Enterococci group). The test results successfully met the D-2 regulation of the IMO (International Marine Organization). In addition, oxidants, such as H202, total residual oxidants (TRO) and OH radicals, and potential halogenated by-products, such as haloacetic acids, trihalomethanes and total organic halides, that had potentially formed after MPUV treatment, were measured. In conclusion, the ballast water treatment system employing the MPUV physical process not only effectively eliminated indigenous species in ballast water but also generated no harmful by-products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2012.655315 | DOI Listing |
Infect Dis Now
January 2025
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, UK.
Antimicrobial resistance (AMR) poses a global health challenge, particularly in maritime environments where unique conditions foster its emergence and spread. Characterized by confined spaces, high population density, and extensive global mobility, ships create a setting ripe for the development and dissemination of resistant pathogens. This review aims to analyse the contributing factors, epidemiological challenges, mitigation strategies specific to AMR on ships and to propose future research directions, bridging a significant gap in the literature.
View Article and Find Full Text PDFNat Geosci
November 2024
National Oceanography Centre, Southampton, UK.
The Southern Ocean, a region highly vulnerable to climate change, plays a vital role in regulating global nutrient cycles and atmospheric CO via the biological carbon pump. Diatoms, photosynthetically active plankton with dense opal skeletons, are key to this process as their exoskeletons are thought to enhance the transfer of particulate organic carbon to depth, positioning them as major vectors of carbon storage. Yet conflicting observations obscure the mechanistic link between diatoms, opal and particulate organic carbon fluxes, especially in the twilight zone where greatest flux losses occur.
View Article and Find Full Text PDFSci Total Environ
January 2025
Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.
View Article and Find Full Text PDFMar Environ Res
January 2025
Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea. Electronic address:
Nucleocytoplasmic large DNA viruses (NCLDVs) are known to infect phytoplankton and play a significant role in regulating their population dynamics. In this study, we aimed to investigate the co-occurrence patterns between phytoplankton and NCLDVs in the southern coastal ecosystem of South Korea. We collected seawater every month from March 2018 to December 2020 and analyzed the samples using Cytochrome c Oxidase subunit I metabarcoding and metagenomic analyses.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Department of Environmental Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
Mesozooplankton are critical components of marine ecosystems, acting as key intermediaries between primary producers and higher trophic levels by grazing on phytoplankton and influencing fish populations. They play pivotal roles in the pelagic food web and export production, affecting the biogeochemical cycling of carbon and nutrients. Therefore, accurately modeling and visualizing mesozooplankton community dynamics is essential for understanding marine ecosystem patterns and informing effective management strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!