The methyl-cytosine binding domain 2 (MBD2)-nucleosome remodeling and deacetylase (NuRD) complex recognizes methylated DNA and silences expression of associated genes through histone deacetylase and nucleosome remodeling functions. Our previous structural work demonstrated that a coiled-coil interaction between MBD2 and GATA zinc finger domain containing 2A (GATAD2A/p66α) proteins recruits the chromodomain helicase DNA-binding protein (CHD4/Mi2β) to the NuRD complex and is necessary for MBD2-mediated DNA methylation-dependent gene silencing in vivo (Gnanapragasam, M. N., Scarsdale, J. N., Amaya, M. L., Webb, H. D., Desai, M. A., Walavalkar, N. M., Wang, S. Z., Zu Zhu, S., Ginder, G. D., and Williams, D. C., Jr. (2011) p66α-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc. Natl. Acad. Sci. U.S.A. 108, 7487-7492). The p66α-MBD2 interaction differs from most coiled-coils studied to date by forming an anti-parallel heterodimeric complex between two peptides that are largely monomeric in isolation. To further characterize unique features of this complex that drive heterodimeric specificity and high affinity binding, we carried out biophysical analyses of MBD2 and the related homologues MBD3, MBD3-like protein 1 (MBD3L1), and MBD3-like protein 2 (MBD3L2) as well as specific mutations that modify charge-charge interactions and helical propensity of the coiled-coil domains. Analytical ultracentrifugation analyses show that the individual peptides remain monomeric in isolation even at 300 μM in concentration for MBD2. Circular dichroism analyses demonstrate a direct correlation between helical content of the coiled-coil domains in isolation and binding affinity for p66α. Furthermore, complementary electrostatic surface potentials and inherent helical content of each peptide are necessary to maintain high-affinity association. These factors lead to a binding affinity hierarchy of p66α for the different MBD2 homologues (MBD2 ≈ MBD3 > MBD3L1 ≈ MBD3L2) and suggest a hierarchical regulatory model in tissue and life cycle stage-specific silencing by NuRD complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561560PMC
http://dx.doi.org/10.1074/jbc.M112.431346DOI Listing

Publication Analysis

Top Keywords

coiled-coil interaction
12
mbd2 homologues
12
unique features
8
anti-parallel heterodimeric
8
methyl-cytosine binding
8
binding domain
8
gata zinc
8
zinc finger
8
finger domain
8
domain gatad2a/p66α
8

Similar Publications

Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells.

View Article and Find Full Text PDF

Recombinant Antibodies Inhibit Enzymatic Activity of the E3 Ubiquitin Ligase CHIP via Multiple Mechanisms.

J Biol Chem

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.

View Article and Find Full Text PDF

Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR , a previously proposed candidate for the resistance gene. Though recent studies have identified as the true gene, Yr10 remains an important NLR in understanding NLR-mediated immunity in wheat.

View Article and Find Full Text PDF

Circ_0114428 knockdown inhibits ROCK2 expression to assuage lipopolysaccharide-induced human pulmonary alveolar epithelial cell injury through miR-574-5p.

J Physiol Sci

January 2025

Department of Critical Care Medicine, The Third People's Hospital of Qingdao, No. 29 Yongping Road, Licang District, 266000, Qingdao, Shandong, China. Electronic address:

Background: Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI.

Methods: Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model.

View Article and Find Full Text PDF

The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew.

Plant Biotechnol J

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!