Aim: We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits.
Materials And Methods: We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests.
Results: MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone.
Conclusion: MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.
Download full-text PDF |
Source |
---|
Stem Cell Rev Rep
January 2025
Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
Background: Conventional post-stroke edema management strategies are limitedly successful as in multiple cases of hemorrhagic transformation is being reported. Clinically, acute-ischemic-stroke (AIS) intervention by endovascular mesenchymal stem cells (MSCs) have shown benefits by altering various signaling pathways. Our previous studies have reported that intra-arterial administration of 1*10 MSCs (IA-MSCs) were beneficial in alleviating post-stroke edema by modulating PKCδ/MMP9/AQP4 axis and helpful in preserving the integrity of blood-brain-barrier (BBB).
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Dipartimento di Medicina Sperimentale, Università di Genova, Viale Benedetto XV, 3, Genova, 16132, Italy.
Progress of human brain in vitro models stands as a keystone in neurological and psychiatric research, addressing the limitations posed by species-specific differences in animal models. The generation of human neurons from induced pluripotent stem cells (iPSCs) using transcription factor reprogramming protocols has been shown to reduce heterogeneity and improve consistency across different stem cell lines. Despite notable advancements, the current protocols still exhibit several shortcomings.
View Article and Find Full Text PDFInt J Hematol
January 2025
Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan.
Chronic graft-versus-host disease (cGVHD) is a major serious complication after allogeneic stem-cell transplantation (allo-HSCT), and often mimics autoimmune diseases. Central nervous system (CNS) symptoms are rare manifestations of cGVHD, and are difficult to diagnose. CNS manifestations of cGVHD were discussed in the 2020 National Institutes of Health cGVHD Consensus Project as one of the "atypical cGVHD manifestations" with involvement of various organ systems other than classical cGVHD organs.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!