A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electronic structure and stabilities of Ni-doped germanium nanoclusters: a density functional modeling study. | LitMetric

The present study reports the geometry, electronic structure, growth behavior and stability of neutral and ionized nickel encapsulated germanium clusters containing 1-20 germanium atoms within the framework of a linear combination of atomic orbital density functional theory (DFT) under a spin polarized generalized gradient approximation. In the growth pattern, Ni-capped Gen and Ni-encapsulated Gen clusters appear mostly as theoretical ground state at a particular size. To explain the relative stability of the ground state clusters, variation of different parameters, such as average binding energy per atom (BE), embedding energy (EE) and fragmentation energy (FE) of the clusters, were studied together with the size of the cluster. To explain the chemical stability of the clusters, different parameters, e.g., energy gap between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gap), ionization energy (IP), electron affinity (EA), chemical potential (μ), chemical hardness (η), and polarizability etc. were calculated and are discussed. Finally, natural bond orbital (NBO) analysis was applied to understand the electron counting rule applied in the most stable Ge10Ni cluster. The importance of the calculated results in the design of Ge-based superatoms is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-012-1690-yDOI Listing

Publication Analysis

Top Keywords

electronic structure
8
density functional
8
ground state
8
clusters
5
energy
5
structure stabilities
4
stabilities ni-doped
4
ni-doped germanium
4
germanium nanoclusters
4
nanoclusters density
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!