The technical and scientific basis for the measurement of indoor 222Rn concentration using an E-PERM (Electret passive environmental radon monitor) has been described in our earlier work. The purpose of this paper is to describe further development of a practical and convenient system that can be used routinely for indoor 222Rn measurement. The ion chamber is now made of electrically conducting plastic to minimize the response from natural gamma radiation. A spring-loaded shutter method is used to cover and uncover the electret from outside the chamber. The electret voltage reader has been modified to improve the accuracy and the ease in operation. The calibration, performance, error analysis, and lower limits of detection for these standardized versions of E-PERMs are also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004032-199004000-00008 | DOI Listing |
Environ Int
January 2025
Dipartimento di Geoscienze, Università di Padova, Padova, Italy.
Radon (Rn) is a radioactive gas with well-documented harmful effects; the World Health Organization has confirmed it as a cancerogenic for humans. These detrimental effects have prompted Europe to establish national reference levels to protect the exposed population. This is reflected in European directive 59/2013/EURATOM, which has been transposed into the national regulations of EU Member States.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Aomori, Japan.
Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2024
Environmental Assessment Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chengalpattu District, Tamilnadu 603102, India.
Radiat Prot Dosimetry
November 2024
Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
222Rn is recognized as a matter of international concern for human health risk. Because 220Rn as well as 222Rn coexist in the natural environment, thoron sometimes influences the experiment for radon measurement. It is important to measure radon and thoron separately to evaluate the risk of the exposure to 222Rn.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Shanghai Institute of Measurement and Testing Technology, 1500 Zhang-Heng Road, Shanghai 201203, China.
To overcome the time-resolution limitation inherent in the airflow-through scintillation cell method for radon measurement, this study introduces a compartmental model elucidating the behaviors of radon and its progeny within such cells. The computed results of the normalized equilibrium functions derived from the compartmental model, provide quantitative insights into the equilibrium progression of 222Rn and its progeny over time, substantiating the identified time-resolution limitation of 2-3 hours. Laboratory experiments confirm the efficacy of the proposed correction algorithm, showcasing its ability to surmount the time-resolution limitation and achieve a rapid response in radon measurement using airflow-through scintillation cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!