Functional motor recovery is improved due to local placement of GDNF microspheres after delayed nerve repair.

Biotechnol Bioeng

Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada M5G 1X8.

Published: May 2013

The majority of bioengineering strategies to promote peripheral nerve regeneration after injury have focused on therapies to bridge large nerve defects while fewer therapies are being developed to treat other nerve injuries, such as nerve transection. We constructed delivery systems using fibrin gels containing either free GDNF or polylactide-glycolic acid (PLGA) microspheres with GDNF to treat delayed nerve repair, where ELISA verified GDNF release. We determined the formulation of microspheres containing GDNF that optimized nerve regeneration and functional recovery in a rat model of delayed nerve repair. Experimental groups underwent delayed nerve repair and treatment with GDNF microspheres in fibrin glue at the repair site or control treatments (empty microspheres or free GDNF without microspheres). Contractile muscle force, muscle mass, and MUNE were measured 12 weeks following treatment, where GDNF microspheres (2 weeks formulation) were superior compared to either no GDNF or short-term release of free GDNF to nerve. Nerve histology distal to the repair site demonstrated increased axon counts and fiber diameters due to GDNF microspheres (2 weeks formulation). GDNF microspheres partially reversed the deleterious effects of chronic nerve injury, and recovery was slightly favored with the 2 weeks formulation compared to the 4 weeks formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.24800DOI Listing

Publication Analysis

Top Keywords

gdnf microspheres
24
delayed nerve
16
nerve repair
16
weeks formulation
16
gdnf
12
nerve
12
free gdnf
12
microspheres
9
nerve regeneration
8
microspheres gdnf
8

Similar Publications

Peripheral nerve injuries (PNI) represent the most common type of nervous system injuries, resulting in 5 million injuries per year. Current gold standard, autografts, still carry several limitations, including the inappropriate type, size, and function matches in grafted nerves, lack of autologous donor sites, neuroma formation, and secondary surgery incisions. Polymeric nerve conduits, also known as nerve guides, can help overcome the aforementioned issues that limit nerve recovery and regeneration by reducing tissue fibrosis, misdirection of regenerating axons, and the inability to maintain long- distance axonal growth.

View Article and Find Full Text PDF

Introduction: Volumetric muscle loss (VML) is one of the most severe and debilitating conditions in orthopedic and regenerative medicine. Current treatment modalities often fail to restore the normal structure and function of the damaged skeletal muscle. Bioengineered tissue constructs using the patient's own cells have emerged as a promising alternative treatment option, showing positive outcomes in fostering new muscle tissue formation.

View Article and Find Full Text PDF

Multi-loaded PLGA microspheres as neuroretinal therapy in a chronic glaucoma animal model.

Drug Deliv Transl Res

October 2024

Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.

This work focused on the co-encapsulation and simultaneous co-delivery of three different neuroprotective drugs in PLGA (poly(lactic-co-glycolic acid) microspheres for the treatment of glaucoma. For formulation optimization, dexamethasone (anti-inflammatory) and ursodeoxycholic acid (anti-apoptotic) were co-loaded by the solid-in-oil-in-water emulsion solvent extraction-evaporation technique as a first step. The incorporation of a water-soluble co-solvent (ethanol) and different amounts of dexamethasone resulted critical for the encapsulation of the neuroprotective agents and their initial release.

View Article and Find Full Text PDF

Bioengineered nerve guides with glial cell line-derived neurotrophic factor (GDNF) support recovery after facial nerve injury by acting as regenerative scaffolds. To compare functional, electrophysiological, and histological outcomes after repair of rat facial nerve transection in control, empty nerve guide, and nerve guide with GDNF conditions. Rats underwent transection and primary repair of the buccal branch of the facial nerve and were divided into (1) transection and repair only, (2) transection and repair augmented with empty guide, (3) transection and repair augmented with GDNF-guide groups.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is a group of genetically diverse inherited disorders characterised by the progressive photoreceptors and pigment epithelial cell dysfunction leading to central vision impairment. Although important advances in the understanding of the pathophysiologic pathways involved in RP have been made, drug delivery for the treatment of ocular disorders affecting the posterior segment of the eye is still an unmet clinical need. In the present study, we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating two neuroprotectants agents (glial cell-line-derived neurotrophic factor-GDNF and Tauroursodeoxycholic acid-TUDCA) as a potential therapeutic tool for the treatment of RP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!