Effect of inert gas and prefermentative treatment with polyvinylpolypyrrolidone on the phenolic composition of Chilean Sauvignon blanc wines.

J Sci Food Agric

Departmento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Casilla 1004, 8820808, Santiago, Chile.

Published: June 2013

Background: Sauvignon blanc wines are produced under a wide variety of winemaking conditions, some of which include different fruit-ripening levels, cold soaks and the use of fining agents and inert gases. Anecdotal evidence suggests that sensory variations among these wines may have to do with their phenolic composition and concentration. Therefore the aim of this work was to study the effects of different winemaking conditions typically used in Chile on the phenolic composition and concentration of Sauvignon blanc wines.

Results: The use of an inert gas (CO2) in winemaking produced differences in the proportion of proanthocyanidin fractions. A higher concentration of flavan-3-ol monomers resulted from winemaking in the presence of inert gas. This condition also produced a higher content of total phenols and low-molecular-weight phenolic compounds. Low doses of polyvinylpolypyrrolidone (PVPP) in the prefermentative treatments produced wines with a higher content of phenolic compounds. Under these conditions a higher content of polymeric proanthocyanidins was observed.

Conclusion: Different winemaking conditions modified the concentration and proportion of proanthocyanidin fractions and the global phenolic composition of the resulting white wines. This should be taken into account by the wineries producing these wines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.5993DOI Listing

Publication Analysis

Top Keywords

phenolic composition
16
inert gas
12
sauvignon blanc
12
winemaking conditions
12
higher content
12
blanc wines
8
composition concentration
8
proportion proanthocyanidin
8
proanthocyanidin fractions
8
phenolic compounds
8

Similar Publications

This study investigated the antihyperglycemic potential of a hydroalcoholic extract from Syzygium malaccense leaves (E-SM) and isolate phenolic compounds with antioxidant and cytotoxic activities through a bioguided assay. The aim was to explore the therapeutic properties of S. malaccense in managing hyperglycemia and oxidative stress-related conditions.

View Article and Find Full Text PDF

This study aimed to examine the extraction of specific phenolic compounds from blackthorn using ultrasound-assisted extraction (UAE) and to evaluate the influence of UAE on the phenolic composition, bioaccessibility, and cytotoxic effect evaluated on ovarian cancer (OVCAR-3 and SKOV-3) and healthy (HaCaT) cell lines. The UAE parameters were optimized by modeling with the response surface method. Temperature, time, and ultrasound amplitude were utilized to determine the optimal extraction conditions.

View Article and Find Full Text PDF

Objective: To evaluate the 36-month clinical performance of Single Bond Universal Adhesive (SBU; 3M ESPE, Germany) in non-carious cervical lesions (NCCLs) using different modes of adhesion according to the FDI criteria. The primary outcome was the retention loss of the restorations, while the secondary outcomes included marginal staining, marginal adaptation, post-operative sensitivity and tooth vitality, recurrence of caries erosion and abfraction, and tooth integrity, all evaluated according to the FDI criteria.

Materials And Methods: In this study, the SBU Adhesive was applied to 246 NCCLs of 25 patients using different modes of adhesion: Self-etch (SE), selective-enamel-etching (SLE), and etch-and-rinse (ER).

View Article and Find Full Text PDF

Developing novel materials is an essential requirement in the engineering field. This study investigates the effects of incorporating wood dust particles on the mechanical and erosive wear properties of Luffa acutangula fiber (LAF)-reinforced phenol-formaldehyde composites, fabricated using the hand layup method with a constant 20% fiber content and varying wood dust particle contents of 0%, 10%, 20%, and 30%. Using the Taguchi method, the study identifies the optimal combination for minimizing erosive wear - 20% wood dust content, 45 m/s impact velocity, 60° impingement angle, 600 μm erodent size, and 60 mm standoff distance-achieving a minimum erosion rate of 189.

View Article and Find Full Text PDF

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!