In short QT syndrome, inherited gain-of-function mutations in the human ether a-gogo-related gene (hERG) K(+) channel have been associated with development of fatal arrhythmias. This implies that drugs that activate hERG as a side effect may likewise pose significant arrhythmia risk. hERG activators have been found to have diverse mechanisms of activation, which may reflect their distinct binding sites. Recently, the new hERG activator ICA-105574 was introduced, which disables inactivation of the hERG channel with very high potency. We explored characteristics of this new drug in several experimental models. Patch clamp experiments were used to verify activation of hERG channels by ICA-105574 in human embryonic kidney cells stably-expressing hERG channels. ICA-105574 significantly shortened QT and QTc intervals and monophasic action potential duration (MAP(90)) in Langendorff-perfused guinea-pig hearts. We also administered ICA-105574 to anesthetized dogs while recording ECG and drug plasma concentrations. ICA-105574 (10 mg/kg) significantly shortened QT and QTc intervals, with a free plasma concentration of approximately 1.7 µM at the point of maximal effect. Our data showed that unbound ICA-105574 caused QT shortening in dogs at concentrations comparable to the half maximal effective concentration (EC(50), 0.42 µM) of hERG activation in the patch clamp studies.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.12220fpDOI Listing

Publication Analysis

Top Keywords

herg activator
8
activator ica-105574
8
herg
8
herg channel
8
patch clamp
8
herg channels
8
channels ica-105574
8
shortened qtc
8
qtc intervals
8
ica-105574
7

Similar Publications

Through catalyzing the transfer of methyl groups onto the guanidinium of arginine, protein arginine methyltransferase 5 (PRMT5) was essential to the cell growth of cancer cells. By utilizing a scaffold hopping strategy, a novel series of 3,4-dihydroisoquinolin-1()-one derivatives were designed and synthesized. Through a systematic SAR study, demonstrated excellent PRMT5 inhibitory activity, potent antiproliferative activity against Z-138, favorable pharmacokinetic profiles, and low hERG toxicity.

View Article and Find Full Text PDF

Drug toxicity prediction model based on enhanced graph neural network.

Comput Biol Med

December 2024

Faculty of Computer and AI, Cairo University, Egypt. Electronic address:

Prediction of drug toxicity remains a significant challenge and an essential process in drug discovery. Traditional machine learning algorithms struggle to capture the full scope of molecular structure features, limiting their effectiveness in toxicity prediction. Graph Neural Network offers a promising solution by effectively extracting drug features from their molecular graphs.

View Article and Find Full Text PDF

AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers.

J Cheminform

December 2024

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches.

View Article and Find Full Text PDF

Background And Objective: In silico human models are being used more and more to predict the potential proarrhythmic risk of compounds. It has been shown that incorporation of the dynamics of drug-hERG channel interactions can have an important impact on the action potential duration (APD) at normal heart rates. Our aim is to investigate the relevance of drug dynamics on other important biomarkers of proarrhythmic risk.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) patients are treated with a standardised, short World Health Organization (WHO) regimen which includes clofazimine (CFZ) and bedaquiline (BDQ) antibiotics. These two antibiotics lead to the development of QT prolongation in patients, inhibiting potassium (K) uptake by targeting the voltage-gated K (Kv)11.1 (hERG) channel of the cardiomyocytes (CMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!