Background: Oxidative stress is a component of many pathological conditions including neurodegenerative diseases and inflammation. An important source of reactive oxygen species (ROS) are lipoxygenases (LOX) - enzymes responsible for the metabolism of arachidonic acid and other polyunsaturated fatty acids. LOX inhibitors have a protective effect in inflammatory diseases and in neurodegenerative disorders because of their anti-inflammatory activity. However, the molecular mechanism of the protective action of LOX inhibitors has not yet been fully elucidated.
Methods: The aim of this study was to compare the antioxidative potential of widely used LOX inhibitors: BWB70C, AA-861, zileuton, baicalein and NDGA. The antioxidative properties were evaluated in cell-free systems. We measured the effect of the tested compounds on iron/ascorbate-induced lipid peroxidation and on carbonyl group formation in the rat brain homogenate. Direct free radical scavenging was analyzed by using DPPH assay.
Results: Our data showed that the inhibitor of all LOXs, i.e., NDGA, 5-LOX inhibitor BWB70C and the inhibitor of 12/15-LOX, baicalein, significantly decreased the level of lipid and protein oxidation. The free radical scavenging activity of these inhibitors was comparable to known ROS scavengers, i.e., resveratrol and trolox. Zileuton (the inhibitor of 5-LOX) slightly prevented lipid and protein oxidation, it also scavenged the DPPH radical. AA-861 (the inhibitor of 5 and 12/15-LOX) slightly protected lipids against Fe/asc-evoked lipid peroxidation at high concentrations, but had no effect on carbonyl group formation and DPPH scavenging.
Conclusions: Our results indicate that some LOX inhibitors demonstrate potent anti-oxidative, free radical scavenging properties. AA-861, whose antioxidative potential is very weak, may be a specific tool to be used in experimental and perhaps even clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1734-1140(12)70914-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!