Multiple mechanisms underlie the surprising willingness of mothers to tolerate the semi-allogeneic fetal tissues during pregnancy. Chief among these is the expression of the HLA-G molecules that has been largely demonstrated to be responsible for reprogramming the local maternal immune response towards tolerance. We recently identified a subset of tolerogenic dendritic cells, DC-10 that secrete high amounts of IL-10 and express high levels of HLA-G and its ligand ILT4. DC-10 are present in the peripheral blood and are essential in inducing adaptive regulatory T cells. We investigated the presence of DC-10 and HLA-G-expressing CD4(+) T cells in human decidua in the first trimester of pregnancy. Results showed that these cells are highly represented in human decidua as compared to the peripheral blood. This is the first report describing decidual DC-10 and CD4(+)HLA-G(+) T cells, strongly suggesting that they may accumulate or be induced at the fetal maternal interface to promote tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610019 | PMC |
http://dx.doi.org/10.1016/j.humimm.2012.11.031 | DOI Listing |
J Adv Res
January 2025
Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China. Electronic address:
Introduction: Despite of numerous studies of the placenta, some molecular and cellular characteristics, particularly the relationship among different cell types, have not been well understood. We aim to investigate the basic and intricate details of cellular and molecular elements in early and late phase placentas to gain better understanding of the immune regulation of human reproductive process.
Methods: A novel combination of techniques of spatial transcriptomics(ST), multiple immunohistochemistry, and a dual labeling combining immunohistochemistry and (fluorescence in situ hybridization) FISH on normal and ectopic pregnancy and animal models was employed to investigate the placenta at tissue, cell, protein and molecular levels and to trace the fetal and maternal origin of every cell in early and late placentas.
Eur J Immunol
January 2025
Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the placenta can lead to fetal distress and demise, characterized by severe trophoblast necrosis, chronic histiocytic intervillositis (CHI), and massive perivillous fibrin deposition. We aimed to uncover spatial immune-related protein changes in SARS-CoV-2 placentitis compared with CHI placentas and uncomplicated pregnancies to gain insight into the underlying pathophysiological mechanisms. Placentas were retrospectively collected from cases with SARS-CoV-2 placentitis resulting in fetal distress/demise (n = 9), CHI (n = 9), and uncomplicated term controls (n = 9).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40255 Duesseldorf, Germany.
To date, very little is known about how apoptosis and autophagy affect human endometrial stromal cells (ESCs), particularly how these processes might determine the depth of implantation in humans. Before investigating how apoptosis and autophagy might modulate the implantation process in an infertile population, it is necessary to clarify how these processes are regulated in healthy individuals. This study examined the protein expression related to apoptosis and autophagy in primary ESCs from fertile women, particularly in the context of decidualization and embryo contact, using Western blot analysis.
View Article and Find Full Text PDFMol Med
January 2025
Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Reduced lymphoid enhancer-binding factor 1 (LEF1) expression in patients with adenomyosis during the mid-secretory phase leads to impaired endometrial receptivity, affecting embryo implantation. This study investigated the molecular mechanisms underlying reduced endometrial receptivity in 25 adenomyosis patients and 25 controls. Functional experiments were conducted using human endometrial stromal cells (HESCs) and TERT-immortalized HESCs(T-HESCs), with final validation performed using a mouse model.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.
At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!