Why is homocysteine toxic for the nervous and immune systems?

Curr Aging Sci

Department of Biochemistry and International Biotechnological Center, M.V. Lomonosov Moscow State University, Moscow, Russia.

Published: February 2013

Hyperhomocysteinemia is a risk factor for a number of neurodegenerative and cardiovascular diseases. We have shown that homocysteine induces excitotoxic effects in cells expressing glutamate receptors of the NMDA class. These receptors were found not only in neurons but also in immune-competent cells, neutrophils, red blood cells, cardiomyocytes, and osteoblasts. Activation of these cells by homocysteine results in an increase in cytoplasmic calcium ions, accumulation of reactive oxygen species, and activation of MAP kinase. An overload of immune-competent cells activates both necrotic and apoptotic cell death, whereas the neuropeptide carnosine (an antioxidant and immune modulator) protects cells against both processes. In a model of prenatal hyperhomocysteinemia in rats, we have found that carnosine protects animals against homocysteine toxicity with no change of the blood homocysteine levels. The efficiency of carnosine has also been demonstrated in clinical trials of chronic brain ischemia and Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.2174/18746098112059990007DOI Listing

Publication Analysis

Top Keywords

immune-competent cells
8
cells
6
homocysteine
5
homocysteine toxic
4
toxic nervous
4
nervous immune
4
immune systems?
4
systems? hyperhomocysteinemia
4
hyperhomocysteinemia risk
4
risk factor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!