To determine the presence of sexual dimorphic transcription and how in vitro culture environments influence X-linked gene transcription patterns in preimplantation embryos, we analyzed mRNA expression levels in in vivo-derived, in vitro-fertilized (IVF), and cloned porcine blastocysts. Our results clearly show that sex-biased expression occurred between female and male in vivo blastocysts in X-linked genes. The expression levels of XIST, G6PD, HPRT1, PGK1, and BEX1 were significantly higher in female than in male blastocysts, but ZXDA displayed higher levels in male than in female blastocysts. Although we found aberrant expression patterns for several genes in IVF and cloned blastocysts, similar sex-biased expression patterns (on average) were observed between the sexes. The transcript levels of BEX1 and XIST were upregulated and PGK1 was downregulated in both IVF and cloned blastocysts compared with in vivo counterparts. Moreover, a remarkable degree of expression heterogeneity was observed among individual cloned embryos (the level of heterogeneity was similar in both sexes) but only a small proportion of female IVF embryos exhibited variability, indicating that this phenomenon may be primarily caused by faulty reprogramming by the somatic cell nuclear transfer (SCNT) process rather than in vitro conditions. Aberrant expression patterns in cloned embryos of both sexes were not ameliorated by treatment with Scriptaid as a potent HDACi, although the blastocyst rate increased remarkably after this treatment. Taken together, these results indicate that female and male porcine blastocysts produced in vivo and in vitro transcriptional sexual dimorphisms in the selected X-linked genes and compensation of X-linked gene dosage may not occur at the blastocyst stage. Moreover, altered X-linked gene expression frequently occurred in porcine IVF and cloned embryos, indicating that X-linked gene regulation is susceptible to in vitro culture and the SCNT process, which may eventually lead to problems with embryonic or placental defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517569 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051398 | PLOS |
Genes (Basel)
January 2025
Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil.
Background: Nance-Horan syndrome (NHS) is a rare, frequently underdiagnosed, X-linked disease caused by mutations in the NHS gene. In males, it causes bilateral dense pediatric cataracts, dental anomalies, and facial dysmorphisms. Females traditionally have a more subtle phenotype with discrete lens opacities as an isolated feature.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.
TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.
View Article and Find Full Text PDFGenes (Basel)
December 2024
The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland.
Background: An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, NM_000390.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
Background/objectives: The ectodysplasin A () gene, a member of the tumor necrosis factor ligand superfamily, is involved in the early epithelial-mesenchymal interaction that regulates ectoderm-derived appendage formation. Numerous studies have shown that mutations in the gene can cause X-linked ectodermal dysplasia (ED) and non-syndromic oligodontia (NSO). Accordingly, this study aimed to identify the causative genetic mutations of the gene.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
Background: The use of exome sequencing (ES) has helped in detecting many variants and genes that cause primary adrenal insufficiency (PAI). The diagnosis of PAI is difficult and can be life-threatening if not treated urgently. Consanguinity can impact the detection of recessively inherited genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!