A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reelin is a target of polyglutamine expanded ataxin-7 in human spinocerebellar ataxia type 7 (SCA7) astrocytes. | LitMetric

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder that results from polyglutamine expansion of the ataxin-7 (ATXN7) protein. Remarkably, although mutant ATXN7 is expressed throughout the body, pathology is restricted primarily to the cerebellum and retina. One major goal has been to identify factors that contribute to the tissue specificity of SCA7. Here we describe the development and use of a human astrocyte cell culture model to identify reelin, a factor intimately involved in the development and maintenance of Purkinje cells and the cerebellum as a whole, as an ATXN7 target gene. We found that polyglutamine expansion decreased ATXN7 occupancy, which correlated with increased levels of histone H2B monoubiquitination, at the reelin promoter. Treatment with trichostatin A, but not other histone deacetylase inhibitors, partially restored reelin transcription and promoted the accumulation of mutant ATXN7 into nuclear inclusions. Our findings suggest that reelin could be a previously unknown factor involved in the tissue specificity of SCA7 and that trichostatin A may ameliorate deleterious effects of the mutant ATXN7 protein by promoting its sequestration away from promoters into nuclear inclusions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535616PMC
http://dx.doi.org/10.1073/pnas.1218331110DOI Listing

Publication Analysis

Top Keywords

mutant atxn7
12
spinocerebellar ataxia
8
ataxia type
8
type sca7
8
polyglutamine expansion
8
atxn7 protein
8
tissue specificity
8
specificity sca7
8
nuclear inclusions
8
atxn7
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!