We used real-time functional magnetic resonance imaging (fMRI) to determine which regions of the human brain have a role in vigilance as measured by reaction time (RT) to variably timed stimuli. We first identified brain regions where activation before stimulus presentation predicted RT. Slower RT was preceded by greater activation in the default-mode network, including lateral parietal, precuneus, and medial prefrontal cortices; faster RT was preceded by greater activation in the supplementary motor area (SMA). We examined the roles of these brain regions in vigilance by triggering trials based on brain states defined by blood oxygenation level-dependent activation measured using real-time fMRI. When activation of relevant neural systems indicated either a good brain state (increased activation of SMA) or a bad brain state (increased activation of lateral parietal cortex and precuneus) for performance, a target was presented and RT was measured. RTs on trials triggered by a good brain state were significantly faster than RTs on trials triggered by a bad brain state. Thus human performance was controlled by monitoring brain states that indicated high or low vigilance. These findings identify neural systems that have a role in vigilance and provide direct evidence that the default-mode network has a role in human performance. The ability to control and enhance human behavior based on brain state may have broad implications.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00533.2011DOI Listing

Publication Analysis

Top Keywords

brain state
20
default-mode network
12
brain
10
supplementary motor
8
motor area
8
real-time fmri
8
role vigilance
8
brain regions
8
preceded greater
8
greater activation
8

Similar Publications

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

Estimating self-performance when making complex decisions.

Sci Rep

January 2025

Centre for Brain, Mind and Markets, Faculty of Business and Economics, The University of Melbourne, Melbourne, Australia.

Metacognition, the ability to monitor and reflect on our own mental states, enables us to assess our performance at different levels - from confidence in individual decisions to overall self-performance estimates (SPEs). It plays a particularly important part in computationally complex decisions that require a high level of cognitive resources, as the allocation of such limited resources presumably is based on metacognitive evaluations. However, little is known about metacognition in complex decisions, in particular, how people construct SPEs.

View Article and Find Full Text PDF

Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!