A luminescent tetranuclear ruthenium(II) complex as a tracking non-viral gene vector.

Chem Commun (Camb)

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, PR China.

Published: January 2013

A luminescent tetranuclear ruthenium(II) complex was developed to act as a DNA carrier and at the same time offer luminescent imaging to follow the DNA intracellular trafficking with time.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc37896eDOI Listing

Publication Analysis

Top Keywords

luminescent tetranuclear
8
tetranuclear rutheniumii
8
rutheniumii complex
8
complex tracking
4
tracking non-viral
4
non-viral gene
4
gene vector
4
vector luminescent
4
complex developed
4
developed dna
4

Similar Publications

Switchable Fluorescence of a Mechanical Stimulus-Responsive Au-P-S Complex.

Molecules

December 2024

Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

The reaction of [(3-bdppmapy)(AuCl)] with NaHmna (3-bdppmapy = N,N'-bis-(diphenylphosphanylmethyl-3-aminopytidine, Hmna = 2-mercaptonicotinic acid)) resulted in a tetranuclear Au-P-S complex [(3-bdppmapy)(AuHmna)(AuCl)] () which emitted bright yellow fluorescence at 542 nm under 377 nm excitation (QY = 5.3%, = 0.83 ns).

View Article and Find Full Text PDF

Ligands combining two lateral bis-pyridyl-phosphonated-pyclens were synthesized, using a flexible linear pegylated linker (L2) or a bulkier K22 crown-ether (L3). A functionalized pyridyl-phosphonated-pyclen (L1) was also prepared as a mononuclear analogue. Coordination behavior of lanthanide cations was studied via NMR titration with Lu for L1, and UV/Vis and luminescence spectroscopy with Yb for L2/L3.

View Article and Find Full Text PDF

Macrocyclic Cu(I)-pyrazolate tetramers (Cupz) can fold into compact structures with luminescent Cu cores whose emission wavelengths are sensitive to steric effects along the periphery of the macrocycle. Introducing CF at the C4 position of 3,5-di-Bu-pyrazolate increases steric crowding that modifies the conformational behavior of the Cupz complex, highlighted by a low-temperature martensitic transition. Variable-temperature analysis of solid-state luminescence reveal an unexpected blueshifting of emission with rising temperature.

View Article and Find Full Text PDF

The heterometallic [Ag(I)/Fe(II)] molecular electrocatalysts for hydrogen production were introduced here to recognize the mutual role of metallic nuclearity and ligand engineering. A series of ferrocenyl dithiophosphonate stabilized mononuclear [Ag(PPh){SPFc(OR)}] {where R=Me (1), Et (2), Pr (3), Pr (4), Amyl (5); Fc=Fe (ɳ-CH) (ɳ-CH)} and dinuclear [Ag(PPh){SPFc(OR}] {where R=Et (2 a), and Pr (3 a)} complexes were synthesized and characterized by SCXRD, NMR (P and H), ESI-MS, UV-Vis, and FT-IR spectroscopy. The comparative electrocatalytic HER behavior of 1-5 and 2 a-3 a showed effective current density of 1 mA/cm with overpotentials ranging from 772 to 991 mV, demonstrating the influence of extended and branched carbon chains in dithiophosphonates and metallic (mono-/di-) nuclearity, which correlates with documented tetra-nuclear [Ag(SPFc(OPr)], 6.

View Article and Find Full Text PDF

The development of Zn-based phosphorescent materials, associated with a ligand-centered (LC) transition, is extremely limited. Herein, we demonstrated dual emissions including fluorescence and phosphorescence in luminescent tetranuclear Zn(II) clusters [ZnL(μ-OMe)X] ( = methyl-5-iode-3-methoxysalicylate; X = I, Br, Cl), incorporating iodine-substituted ligands. Single-crystal X-ray structural analyses and variable-temperature emission spectra studies revealed the presence of iodine substitutions, and intermolecular halogen interactions produced the internal/external heavy-atom effects and yielded strong green phosphorescence with a long emission lifetime (λ = 510-522 nm, Φ = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!