A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New ruthenium sensitizers featuring bulky ancillary ligands combined with a dual functioned coadsorbent for high efficiency dye-sensitized solar cells. | LitMetric

Two ruthenium complexes featuring bulky ancillary ligands, XS48 and XS49, were synthesized and studied as dyes in dye-sensitized solar cells (DSCs). Both dyes exhibit higher solar-to-electrical energy conversion efficiency when compared to a commonly used N3 sensitizer under the same conditions. To examine the influence of the bulky ancillary ligands and alleviate the electron recombination in cells, we have developed a dual functioned truxene-based coadsorbent (MXD1) as an alternative candidate to chenodeoxycholic acid (CDCA). This coadsorbent not only effectively shields the back electron transfer from the TiO(2) to I(3)(-) ions but also enhances the light harvesting ability in the short wavelength regions. The photovoltaic performance of XS48-sensitized DSC was independent of the coadsorbents, while XS49 with large bulky ancillary ligand presented better performance when coadsorbent was employed. Interestingly, the simultaneous adsorption-to-sequential adsorption of XS48/49 and MXD1 has caused a notably improved photovoltage, which can be primarily ascribed to the enhanced dye adsorption and retardation of charge recombination. These results not only provide a new vision on how ancillary ligands affect the performance of ruthenium complexes but also open up a new way to achieve further efficiency enhancement of ruthenium complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am302318zDOI Listing

Publication Analysis

Top Keywords

bulky ancillary
16
ancillary ligands
16
ruthenium complexes
12
featuring bulky
8
dual functioned
8
dye-sensitized solar
8
solar cells
8
ancillary
5
ruthenium
4
ruthenium sensitizers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!