The study was conducted in normotensive and spontaneously hypertensive rats anesthetized with urethane (1600 mg/kg of animal weight, intraperitoneally). It has been shown that in normotensive rats, injections of a specific inhibitor of Na+, K(+)-ATPase ouabain (10(-8)-10(-5) mol/l) in the populations of the neurons within nucleus of the solitary tract (NTS), paramedian reticular nucleus (PMn) and lateral reticular nucleus (LRN) were accompanied by the development of the hypertensive responses in a dose-dependent fashion. These data suggest that Na+, K(+)-ATPase of the neuron somatic membranes in the medullary cardiovascular nuclei is involved in neural control of the cardiovascular function, and its inhibition by microinjections of ouabain promotes the development of hypertension. In contrast to normotensive rats, ouabain injected in the medullary nuclei of spontaneously hypertensive animals induced either enhanced hypertensive or hypotensive responses. Biochemical analysis revealed that the activity of Na+, K(+)-ATPase in the microsomal fraction of the medulla oblongata of spontaneously hypertensive rats significantly exceeded its activity in the medulla oblongata of normotensive animals. Possible mechanisms of ouabain effects in spontaneously hypertensive rats have being discussed. Activation of Na+, K(+)-ATPase activity of the cardiovascular neurons with asparkam injections in the medullary nuclei resulted in hypotensive responses in both normotensive and spontaneously hypertensive rats.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spontaneously hypertensive
24
na+ k+-atpase
20
hypertensive rats
16
medulla oblongata
12
effects spontaneously
8
hypertensive
8
normotensive spontaneously
8
normotensive rats
8
reticular nucleus
8
medullary nuclei
8

Similar Publications

Aims: We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment.

Methods: We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Background: Causes of cerebrospinal fluid (CSF) rhinorrhea could be divided into primary (spontaneous) and secondary (head trauma and iatrogenic). Idiopathic intracranial hypertension (IIH) has emerged as a cause for spontaneous CSF rhinorrhea but is still underestimated, may be overlooked and needs special consideration in management. The objective of this study is to demonstrate spontaneous CSF rhinorrhea as the primary presentation of IIH and explore the algorithm of management.

View Article and Find Full Text PDF

NPA7: A Dual Receptor Activating Peptide That Inhibits Cardiac Oxidative Stress.

Hypertension

January 2025

Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (Xiaoyu Ma, J.C.M., D.G.M., Xiao Ma, Y.Z., S.P., Y.W., S.J.S., J.C.B.).

Background: Cardiomyocyte oxidative stress significantly contributes to the progression of hypertension-induced heart failure, highlighting the need for targeted therapies. We developed a novel peptide, NPA7, that coactivates the GC-A (guanylyl cyclase A)/cGMP and MasR (Mas receptor)/cAMP pathway. This study aimed to test NPA7's ability to inhibit oxidative stress by modulating the p62-KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2-related factor 2) pathway in human cardiomyocytes (HCMs) and a rat model of hypertension.

View Article and Find Full Text PDF

Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!