Abs to microbial capsules are critical for host defense against encapsulated pathogens, but very little is known about the effects of Ab binding on the capsule, apart from producing qualitative capsular reactions ("quellung" effects). A problem in studying Ab-capsule interactions is the lack of experimental methodology, given that capsules are fragile, highly hydrated structures. In this study, we pioneered the use of optical tweezers microscopy to study Ab-capsule interactions. Binding of protective mAbs to the capsule of the fungal pathogen Cryptococcus neoformans impaired yeast budding by trapping newly emerging buds inside the parental capsule. This effect is due to profound mAb-mediated changes in capsular mechanical properties, demonstrated by a concentration-dependent increase in capsule stiffness. This increase involved mAb-mediated cross-linking of capsular polysaccharide molecules. These results provide new insights into Ab-mediated immunity, while suggesting a new nonclassical mechanism of Ab function, which may apply to other encapsulated pathogens. Our findings add to the growing body of evidence that Abs have direct antimicrobial functions independent of other components of the immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529781PMC
http://dx.doi.org/10.4049/jimmunol.1202324DOI Listing

Publication Analysis

Top Keywords

cryptococcus neoformans
8
capsular mechanical
8
mechanical properties
8
encapsulated pathogens
8
ab-capsule interactions
8
antibody binding
4
binding cryptococcus
4
neoformans impairs
4
impairs budding
4
budding altering
4

Similar Publications

A 70-year-old man experienced an epileptic seizure. Subsequent MRI performed on close examination revealed high signal in the left occipital cortex on fluid-attenuated inversion recovery. Gadolinium contrast indicated enhancement along the cortex.

View Article and Find Full Text PDF

A 70-year-old man experienced an epileptic seizure. Subsequent MRI performed on close examination revealed high signal in the left occipital cortex on fluid-attenuated inversion recovery. Gadolinium contrast indicated enhancement along the cortex.

View Article and Find Full Text PDF

Green propolis, particularly from the unique flora of the Brazilian Caatinga biome, has gained significant interest due to its diverse chemical composition and biological activities. This study focuses on the chemical characterization and antimicrobial evaluation of Caatinga green propolis. Twelve compounds were isolated through different chromatographic techniques, including flavanones (naringenin, 7--methyleriodictyol, sakuranetin), flavones (hispidulin, cirsimaritin), flavonols (quercetin, quercetin-3-methyl ether, kaempferol, 6-methoxykaempferol, viscosine, penduletin), and one chalcone (kukulkanin B).

View Article and Find Full Text PDF

A Tachyplesin Antimicrobial Peptide from Theraphosidae Spiders with Potent Antifungal Activity Against .

Microorganisms

December 2024

Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China.

The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti- peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species by utilizing bioinformatic tools.

View Article and Find Full Text PDF

In this study, a nanocomposite based on copper oxide-zinc oxide nanoparticles and Gum Arabic (GA@CuO-ZnO nanocomposite) was successfully synthesized using green method. Characterization results revealed that the prepared nanocomposite appeared at the nanoscale level, showed excellent dispersion, and formed stable colloidal nano-solutions. The bimetallic GA@CuO-ZnO nanocomposite was evaluated for its anticancer, antibacterial, and antifungal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!