Reptin is overexpressed in most human hepatocellular carcinomas. Reptin is involved in chromatin remodeling, transcription regulation, or supramolecular complexes assembly. Its silencing leads to growth arrest and apoptosis in cultured hepatocellular carcinoma cells and stops hepatocellular carcinoma progression in xenografts. Reptin has an ATPase activity linked to Walker A and B domains. It is unclear whether every Reptin function depends on its ATPase activity. Here, we expressed Walker B ATPase-dead mutants (D299N or E300G) in hepatocellular carcinoma cells in the presence of endogenous Reptin. Then, we silenced endogenous Reptin and substituted it with siRNA-resistant wild-type (WT) or Flag-Reptin mutants. There was a significant decrease in cell growth when expressing either mutant in the presence of endogenous Reptin, revealing a dominant negative effect of the ATPase dead mutants on hepatocellular carcinoma cell growth. Substitution of endogenous Reptin by WT Flag-Reptin rescued cell growth of HuH7. On the other hand, substitution by Flag-Reptin D299N or E300G led to cell growth arrest. Similar results were seen with Hep3B cells. Reptin silencing in HuH7 cells led to an increased apoptotic cell death, which was prevented by WT Flag-Reptin but not by the D299N mutant. These data show that Reptin functions relevant for cancer are dependent on its ATPase activity, and suggest that antagonists of Reptin ATPase activity may be useful as anticancer agents.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-12-0455DOI Listing

Publication Analysis

Top Keywords

atpase activity
20
cell growth
20
hepatocellular carcinoma
20
endogenous reptin
16
reptin
12
growth arrest
8
carcinoma cells
8
reptin atpase
8
d299n e300g
8
presence endogenous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!