Umbilical cord blood (CB) stem cells have been proposed for cell-based therapeutic applications for diverse diseases of the CNS. We hypothesized that tissue-engineering strategies may extend the efficacy of these approaches by improving the long-term viability and function of stem cell-derived neuronal progenitors. To test our hypothesis, we explored the survival and differentiation of human CB-derived neuronal progenitors (HUCBNP) in a three-dimensional (3D) collagen construct. In contrast to two-dimensional culture conditions, the cells survived in 3D for an extended period of time of more than 2 months. Under 3D conditions, HUCBNP underwent spontaneous neuronal differentiation, which was further enhanced by treatment with neuronal conditioned medium (CM) and nerve growth factor (NGF). Neurite outgrowth, quantified by assessing the fractal dimension (D f) of the complex neuronal networks, was significantly enhanced under 3D conditions in the presence of CM/NGF, concomitant with a reduced expression of the early neuronal marker nestin (1.9-fold), and increased levels of mature neuronal markers such as MAP-2 (3.6-fold), β-tubulin (1.5-fold), and neuronal specific enolase (6.6-fold) and the appearance of the synaptic marker synaptophysin. To assess the feasibility for clinical usage, HUCBNP were also isolated from frozen CB samples and cultured under 3D conditions. The data indicate the essential complete preservation of neurotrophic (survival) and neurotropic (neurite outgrowth) properties. In conclusion, 3D culture conditions are proposed as an essential step for both maintenance of CB neuronal progenitors in vitro and for investigating specific features of neuronal differentiation towards future use in regenerative therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12031-012-9933-z | DOI Listing |
PLoS Genet
January 2025
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.
View Article and Find Full Text PDFGamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.
View Article and Find Full Text PDFPrimary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFDuring nervous system development, diverse types of neurons and glia are sequentially generated by self-renewing neural stem cells (NSCs). Temporal changes in gene expression within NSCs are thought to regulate neural diversity; however, the mechanisms regulating the timing of these temporal gene transitions remain poorly understood. type II NSCs, like human outer radial glia, divide to self-renew and generate intermediate neural progenitors, amplifying and diversifying the population of neurons innervating the central complex, a brain region required for sensorimotor coordination.
View Article and Find Full Text PDFThe TEAD family of transcription factors are best known as the DNA-binding factor in the Hippo pathway, where they act by interacting with transcriptional coactivators YAP and TAZ (YAP/TAZ). Despite the importance of the Hippo pathway, the in vivo functions of TEAD in mammals have not been well established. By comparing mouse mutants lacking TEAD1 and TEAD2 (TEAD1/2) to those lacking YAP/TAZ, we found that TEAD1/2 have both YAP/TAZ-dependent and -independent functions during ventral telencephalon development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!