Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 µM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 µM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6‑morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 µM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981016 | PMC |
http://dx.doi.org/10.3892/ijmm.2012.1203 | DOI Listing |
Discov Oncol
January 2025
Department of Oncology, Yanbian University Hospital, Yanji, 133000, China.
Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.
View Article and Find Full Text PDFMolecules
December 2024
Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China.
Inosine (IS) is a naturally occurring metabolite of adenosine with potent immunomodulatory effects. This study investigates the immunomodulatory effects of inosine, particularly its ability to inhibit the development of colorectal cancer (CRC) cells CT26 through modulation of macrophage phenotypes. Aside from the already reported effects of inosine on T cells, in this study, in vitro experiments revealed that inosine could modulate macrophage phenotype.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:
To meet the demand of consumers for high-quality dry-cured fish. This study investigates the relationship between microbial diversity and the changes in physicochemical properties and non-volatile flavor compounds of dry-cured Spanish mackerel (DCSM) throughout the curing process. Our findings demonstrate that moisture content significantly decreased during curing, while NaCl generally increased.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Suntory Institute for Bioorganic Research, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-Cho, Soraku-Gun, Kyoto 619-0284 Japan.
In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H], [M + 2H] and/or [M + 3H] in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H] generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]/[M + H] ratios reflected their structures, such as the substituting groups and positions.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.
Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!