Electrical stimulation of nervous tissue is used clinically for the treatment of multiple neurological disorders and experimentally for basic research. With the increase of optical probes to record neuronal activity, simple and user-friendly methods are desired to stimulate neurons and their subcellular compartments for biological experimentation. Here we describe the novel integration of liquid metal electrodes with microfluidic culture platforms to accomplish this goal. We integrated electrode and cell channels into a single poly(dimethylsiloxane) (PDMS) chip, eliminating entirely the need to align electrodes with microchannels. We designed the electrode channels such that the metal can be injected by hand and when the device is non-covalently bound to glass. We demonstrated the biocompatibility of the electrodes for long-term cultures (12 days) using hippocampal neurons. We demonstrated the use of these electrodes to depolarize neurons and recorded neuronal activity using the calcium indicator dye, Fluo-4. We established optimal stimulation parameters that induce neuronal spiking without inducing damage. We showed that the liquid metal electrode evoked larger calcium responses in somata than bath electrodes using the same stimulus parameters. Lastly we demonstrated the use of these liquid metal electrodes to target and depolarize axons. In summary, the integration of liquid metal electrodes with neuronal culture platforms provides a user-friendly and targeted method to stimulate neurons and their subcellular compartments, thus providing a novel tool for future biological investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394010 | PMC |
http://dx.doi.org/10.1039/c2lc40954b | DOI Listing |
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Devchand College, Arjunnagar, Kolhapur, MH, 591237, India.
Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:
Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.
View Article and Find Full Text PDFWaste Manag
January 2025
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Jinan 250014, China. Electronic address:
Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Council for Geoscience, Private Bag X112, Pretoria, 0001, South Africa.
One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!