Previous works into photosynthesis regulation under salt stress have focused on the effect of NaCl, although other salts may significantly contribute to the toxicity of saline soils. In this paper, the effects of different salt sources (NaCl, Na(2)SO(4), MgCl(2) and MgSO(4)) on photosynthesis and vegetative growth in three tomato (Solanum lycopersicum L.) cultivars (Marmande RAF, Leader and Daniela) are presented. Differences were found in the net photosynthetic rate and vegetative growth among the studied cultivars and salinity treatments. Cultivar photosynthetic performance related not only to capability for toxic ion exclusion, but also to the maintenance of appropriate essential macronutrient concentrations in leaves. In addition, the role of metabolic and diffusion limitations in regulating photosynthesis varied depending on the studied genotypes. These data, along with variation in biomass and ion distribution in leaves and roots, show that distinct tomato cultivars can address salt tolerance differently, which should be considered when designing strategies to overcome plant sensitivity to salt stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2012.11.006 | DOI Listing |
BMC Genomics
January 2025
Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.
View Article and Find Full Text PDFOecologia
January 2025
Department of Oceanography, Uehiro Center for the Advancement of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Agronomy, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
This study aims to determine the changes in the photosynthetic performance of leaves at different leaf positions and their correlation and to screen out the basic tillage methods suitable for improving the yield. The decrease in soil salt content significantly improved the PSII performance index and quantum yield for electron transport of the bottom leaf group, synergistically enhanced the photosynthetic performance of summer maize leaves (especially the bottom leaf group), and enhanced the correlation between the bottom, middle (including the ear leaf), and upper leaf groups. Under subsoiling tillage conditions, the bottom leaves could produce more carbohydrates to meet the normal growth of the root system, promote the photosynthesis of the middle leaf group at the ear position, and increase the nutrient output of the upper leaf group to the female ear in the middle and later stages of maize aging.
View Article and Find Full Text PDFPhotosynthetica
January 2025
Chengde Bijiashan Ecological Agriculture Technology Development Co., Ltd., 067000 Chengde, Hebei, China.
Application of hyperspectral reflectance technology to track changes in photosynthetic activity in () remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!