Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Species introductions to new habitats can cause a decline in the population size of competing native species and consequently also in their genetic diversity. We are interested in why these adverse effects are weak in some cases whereas in others the native species declines to the point of extinction. While the introduction rate and the growth rate of the introduced species in the new environment clearly have a positive relationship with invasion success and impact, the influence of competition is poorly understood. Here, we investigate how the intensity of interspecific competition influences the persistence time of a native species in the face of repeated and ongoing introductions of the nonnative species. We analyze two stochastic models: a model for the population dynamics of both species and a model that additionally includes the population genetics of the native species at a locus involved in its adaptation to a changing environment. Counterintuitively, both models predict that the persistence time of the native species is lowest for an intermediate intensity of competition. This phenomenon results from the opposing effects of competition at different stages of the invasion process: With increasing competition intensity more introduction events are needed until a new species can establish, but increasing competition also speeds up the exclusion of the native species by an established nonnative competitor. By comparing the ecological and the eco-genetic model, we detect and quantify a synergistic feedback between ecological and genetic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tpb.2012.11.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!