Atypical serine-threonine kinase, mTOR (mechanistic target of Rapamycin; originally coined "mammalian TOR"), exists in two distinct multi-protein complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2), that senses and integrates a variety of environmental signals to control organism growth and homeostasis via non-overlapping signaling pathways. mTOR belongs to the phosphoinositide 3-kinase (PI3-K)-related kinase family, and an aberrant activation of mTORC1 is a potential contributing factor in uncontrolled cell growth, proliferation, and survival of tumor cells via specific effects on cap-dependent translation initiation, as well as in a more sustained manner via advancing ribosome biogenesis. It is thereby shown to be deregulated in numerous pathological conditions including cancer, obesity, type 2 diabetes, and neurodegeneration. Notably, mTOR itself, or through its substrates, regulates stem cell differentiation and maintenance of plueropotency. mTORC2 has been linked to cytoskeletal reorganization and cell survival through Akt, and is crucial to many divergent physiological functions, which may include stem cell regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbior.2012.10.001 | DOI Listing |
J Reprod Immunol
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
To further evaluate the effects of lymphocyte immunotherapy (LIT) for the treatment of RPL patients this study aimed to utilize this type of treatment in RPL patients with positive antinuclear antibodies (ANA) in comparison to ANA-negative RPL women. To this aim, 84 ANA-positive, 114 ANA negative, and 50 healthy pregnant women were recruited. To examine the frequency of cells before and after LIT, flowcytometry technique was employed.
View Article and Find Full Text PDFBiomacromolecules
January 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS) and enzyme-loaded SF microspheres (MS).
View Article and Find Full Text PDFCan J Physiol Pharmacol
January 2025
Dalhousie University, Department of Physiology and Biophysics, Halifax, Canada;
A growing body of evidence suggest that the stem cell antigen-1 expressing (Sca-1) cells in the heart may be the cardiac endothelial stem/progenitor cells. Their endothelial cell (EC) functions, and their role in RV physiology and pathophysiology of right heart failure (RHF) remains poorly defined. This study investigated EC characteristics of rat cardiac Sca-1 cells, assessed spatial distribution and studied changes in Sca1 cells during RV remodelling in monocrotaline (MCT) model of pulmonary hypertension and RV remodeling.
View Article and Find Full Text PDFBlood Adv
January 2025
Stanford University School of Medicine, Stanford, California, United States.
Treatment options for patients with relapsed or refractory (R/R) anaplastic large cell lymphoma (ALCL) have increased in the era of targeted therapies such as brentuximab vedotin (BV) and Anaplastic Lymphoma Kinase (ALK) inhibitors. However, there is no standard treatment and limited published data evaluating their use. The goal of this retrospective study is to describe current real-world treatment and outcomes of pediatric, adolescent, and young adult patients with R/R ALK-positive ALCL.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!