This study examined whether vents in the arms, legs and chest of new protective assault uniforms (PTAU) reduced heat strain at 35 °C during a low dressed state (DSlow), and subsequently improved tolerance time (TT) after transitioning to DShigh compared with the battle dress uniform and overgarment (BDU+O). Small but significant reductions in rectal temperature (Tre), heart rate and vapour pressures over the thigh and shin were observed during DSlow with vents open (37.9 ± 0.2 °C, 120 ± 10 b/min, 3.7 ± 0.4 and 3.5 ± 1.0 kPa) versus closed (38.0 ± 0.1 °C, 127 ± 5 b/min, 4.3 ± 0.3 and 4.6 ± 0.5 kPa). During DShigh Tre was reduced and TT increased significantly with the PTAUs (1.1 ± 0.2 °C/h and 46 ± 24 min) versus BDU+O (1.6 ± 0.2 °C/h and 33 ± 16 min). The vents marginally reduced heat strain during DSlow and extended TT during DShigh) compared with BDU+O. Practitioner Summary: Clothing vents in chemical and biological protective uniforms can assist with heat transfer in situations where the uniforms must be worn for extended periods prior to exposure to a hazardous condition. Once the vents are closed, exposure time is increased and the increase in body temperature reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00140139.2012.746738 | DOI Listing |
Toxicol Mech Methods
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India.
Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
Background: β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.
View Article and Find Full Text PDFJ Cheminform
January 2025
Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.
View Article and Find Full Text PDFSmall Methods
January 2025
Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China.
Light offers superior control in terms of high temporal precision, high spatial precision, and non-invasiveness for the regulation of cellular functions. In recent years, chemical biologists have adopted chemo-optogenetic dimerization approaches, such as photo-triggered chemical inducers of dimerization (pCIDs), as a general tool for spatiotemporal regulation of cellular functions. Traditional chemo-optogenetic dimerization triggers either a single ON or a single OFF of cellular activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!