In maize, the structure of bundle sheath cell (BSC) chloroplasts is less subject to salinity stress than that of mesophyll cell (MC) chloroplasts. To elucidate the difference in sensitivity to salinity, antioxidant capacities and localization of reactive oxygen species were investigated in both chloroplasts. Transmission electron microscopic observation showed that O2 (-) localization was found in both chloroplasts under salinity, but the accumulation was much greater in MC chloroplasts. H2 O2 localization was observed only in MC chloroplasts of salt-treated plants. In isolated chloroplasts, the activities of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) were increased by salinity. While the enhancement of SOD activity was similar in both chloroplasts, the increase of APX and DHAR activities were more pronounced in BSC chloroplasts than in MC chloroplasts. Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and glutathione reductase (GR, EC 1.6.4.2) were undetectable in BSC chloroplasts, while they increased in MC chloroplasts under salinity. Although ascorbate content increased by salinity only in BSC chloroplasts, glutathione content increased significantly in both chloroplasts, and was higher in MC chloroplasts than in BSC chloroplasts. The content of thiobarbituric acid-reactive substances, which is an indicator of lipid peroxidation, was significantly increased by salinity in both chloroplasts. These results suggested O2 (-) -scavenging capacity was comparable between both chloroplasts, whereas H2 O2 -scavenging capacity was lower in MC chloroplasts than in BSC chloroplasts. Moreover, the increased lipid peroxidation under salinity was associated with the structural alteration in MC chloroplasts, while it had less impact on the structure of BSC chloroplasts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12017DOI Listing

Publication Analysis

Top Keywords

bsc chloroplasts
28
chloroplasts
23
increased salinity
12
salinity
9
localization reactive
8
reactive oxygen
8
oxygen species
8
antioxidant capacities
8
bundle sheath
8
chloroplasts salinity
8

Similar Publications

Within-leaf chloroplasts and nitrogen allocation to thylakoids in relation to photosynthesis during grain filling in maize.

Plant Physiol Biochem

March 2023

College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong, 266109, China. Electronic address:

Nitrogen (N) is an important contributor to photosynthetic rate (Pn). However, during grain-filling stage in maize, some leaf N is remobilized to meet demands for grain protein accumulation rather than photosynthetic demands. Therefore, plants that can maintain a relatively high Pn during the N remobilization process would have the key to achieving both high grain yields (HGY) and high grain protein concentrations (HGPC).

View Article and Find Full Text PDF

To better understand the coordination between dark and light reactions during the transition from C to C photosynthesis, we optimized a method for separating thylakoids from mesophyll (MC) and bundle sheath cells (BSCs) across different plant species. We grew six Paniceae grasses including representatives from the C , C -C and C photosynthetic types and all three C biochemical subtypes [nicotinamide adenine dinucleotide phosphate-dependent malic enzyme (NADP-ME), nicotinamide adenine dinucleotide-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK)] in addition to Zea mays under control conditions (1000 μmol quanta m  s and 400 ppm of CO ). Proteomics analysis of thylakoids under native conditions, using blue native polyacrylamide gel electrophoresis followed by liquid chromatography-mass spectrometry (LC-MS), demonstrated the presence of subunits of all light-reaction-related complexes in all species and cell types.

View Article and Find Full Text PDF

In C4 plants, the pyruvate phosphate dikinase regulatory protein (PDRP) regulates the C4 pathway enzyme pyruvate phosphate dikinase (PPDK) in response to changes in incident light intensity. In maize (Zea mays) leaves, two distinct isoforms of PDRP are expressed, ZmPDRP1 and ZmPDRP2. The properties and C4 function of the ZmPDRP1 isoform are well understood.

View Article and Find Full Text PDF

The membranes of Zea mays (maize) mesophyll cell (MC) chloroplasts are more vulnerable to salinity stress than are those of bundle sheath cell (BSC) chloroplasts. To clarify the mechanism underlying this difference in salt sensitivity, we monitored changes in the glycerolipid and fatty acid compositions of both types of chloroplast upon exposure to salinity stress. The monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) contents were higher in MC chloroplasts than in BSC chloroplasts, in both the presence and absence of salt treatment.

View Article and Find Full Text PDF

Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress.

J Plant Physiol

September 2014

IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico. Electronic address:

The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!